When paleontologists at the University of Washington cut into the fossilized jaw of a distant mammal relative, they got more than they bargained for — more teeth, to be specific.(more…)
ANN ARBOR — Like salmon in reverse, long-snouted Bandringa sharks migrated downstream from freshwater swamps to a tropical coastline to spawn 310 million years ago, leaving behind fossil evidence of one of the earliest known shark nurseries.
That’s the surprising conclusion of University of Michigan paleontologist Lauren Sallan and a University of Chicago colleague, who reanalyzed all known specimens of Bandringa, a bottom-feeding predator that lived in an ancient river delta system that spanned what is today the Upper Midwest. (more…)
A new species of carnivorous dinosaur – one of the three largest ever discovered in North America – lived alongside and competed with small-bodied tyrannosaurs 98 million years ago. This newly discovered species, Siats meekerorum, (pronounced see-atch) was the apex predator of its time, and kept tyrannosaurs from assuming top predator roles for millions of years.
Named after a cannibalistic man-eating monster from Ute tribal legend, Siats is a species of carcharodontosaur, a group of giant meat-eaters that includes some of the largest predatory dinosaurs ever discovered. The only other carcharodontosaur known from North America is Acrocanthosaurus, which roamed eastern North America more than 10 million years earlier. Siats is only the second carcharodontosaur ever discovered in North America; Acrocanthosaurus, discovered in 1950, was the first. (more…)
ANN ARBOR — Mammal body size decreased significantly during at least two ancient global warming events. A new finding that suggests a similar outcome is possible in response to human-caused climate change, according to a University of Michigan paleontologist and his colleagues.
Researchers have known for years that mammals such as primates and the groups that include horses and deer became much smaller during a period of warming, called the Paleocene-Eocene Thermal Maximum (PETM), about 55 million years ago. (more…)
Fossil-hunting expeditions to Tanzania, Zambia and Antarctica provide new insights
Predecessors to dinosaurs missed the race to fill habitats emptied when nine out of 10 species disappeared during Earth’s largest mass extinction 252 million years ago.
Or did they?
That thinking was based on fossil records from sites in South Africa and southwest Russia.
It turns out, however, that scientists may have been looking in the wrong places. (more…)
Scientists build new ‘tree of life’ for placentals, visualize common ancestor
Scientists have reconstructed the common ancestor of placental mammals–an extremely diverse group including animals ranging from rodents to whales to humans–using the world’s largest dataset of both genetic and physical traits. (more…)
Researchers have discovered what may be the earliest dinosaur, a creature the size of a Labrador retriever, but with a five foot-long tail, that walked the Earth about 10 million years before more familiar dinosaurs like the small, swift-footed Eoraptor and Herrerasaurus.
The findings mean that the dinosaur lineage appeared 10 million to 15 million years earlier than fossils previously showed, originating in the Middle Triassic rather than in the Late Triassic period. (more…)
A new study indicates that mass extinctions affect the pace of evolution, not just in the immediate aftermath of catastrophe, but for millions of years to follow. The study’s authors, University of Chicago’s Andrew Z. Krug and David Jablonski, will publish their findings in the August issue of the journal Geology.
Scientists expected to see an evolutionary explosion immediately following a mass extinction, but Krug and Jablonski’s findings go far beyond that.
“There’s some general sense that the event happens, there’s some aftermath and then things return to normal,” said Krug, a research scientist in geophysical sciences at UChicago. But in reality, Krug said, “Things don’t return to what they were before. They operate at a different pace, sometimes more rapidly, other times more slowly. Evolutionary rates shift, and that shift is permanent until the next mass extinction.” (more…)