PASADENA, Calif. — NASA’s Curiosity rover is revealing a great deal about Mars, from long-ago processes in its interior to the current interaction between the Martian surface and atmosphere.
Examination of loose rocks, sand and dust has provided new understanding of the local and global processes on Mars. Analysis of observations and measurements by the rover’s science instruments during the first four months after the August 2012 landing are detailed in five reports in the Sept. 27 edition of the journal Science. (more…)
PASADENA, Calif. – Detailed analysis and review have borne out researchers’ initial interpretation of pebble-containing slabs that NASA’s Mars rover Curiosity investigated last year: They are part of an ancient streambed.
The rocks are the first ever found on Mars that contain streambed gravels. The sizes and shapes of the gravels embedded in these conglomerate rocks — from the size of sand particles to the size of golf balls — enabled researchers to calculate the depth and speed of the water that once flowed at this location. (more…)
Taking before and after pictures of Martian terrain, researchers of the UA-led HiRISE imaging experiment have identified almost 250 fresh impact craters on the Red Planet. The results suggest Mars gets pummeled by space rocks less frequently than previously thought, as scientists relied on cratering rates of the moon for their estimates.
Scientists using images from NASA’s Mars Reconnaissance Orbiter, or MRO, have estimated that the planet is bombarded by more than 200 small asteroids or bits of comets per year forming craters at least 12.8 feet (3.9 meters) across.
Researchers have identified 248 new impact sites on parts of the Martian surface in the past decade, using images from the spacecraft to determine when the craters appeared. The 200-per-year planetwide estimate is a calculation based on the number found in a systematic survey of a portion of the planet. (more…)
Ridges in impact craters on Mars appear to be fossils of cracks in the Martian surface, formed by minerals deposited by flowing water. Water flowing beneath the surface suggests life may once have been possible on Mars.
PROVIDENCE, R.I. [Brown University] — Networks of narrow ridges found in impact craters on Mars appear to be the fossilized remnants of underground cracks through which water once flowed, according to a new analysis by researchers from Brown University.
The study, in press in the journal Geophysical Research Letters, bolsters the idea that the subsurface environment on Mars once had an active hydrology and could be a good place to search for evidence of past life. The research was conducted by Lee Saper, a recent Brown graduate, with Jack Mustard, professor of geological sciences. (more…)
PASADENA, Calif. — NASA has selected a new mission, set to launch in 2016, that will take the first look into the deep interior of Mars to see why the Red Planet evolved so differently from Earth as one of our solar system’s rocky planets.
The new mission, named InSight, will place instruments on the Martian surface to investigate whether the core of Mars is solid or liquid like Earth’s, and why Mars’ crust is not divided into tectonic plates that drift like Earth’s. Detailed knowledge of the interior of Mars in comparison to Earth will help scientists understand better how terrestrial planets form and evolve.(more…)
As Mars rover Curiosity makes its final approach to the Red Planet, two UA geoscientists are getting ready to help solve some of the mysteries of its geologic past.
On Aug. 5, at about 10:30 p.m., an already busy summer will kick into overdrive for University of Arizona geosciences professor Bob Downs and one of his graduate students, Shaunna Morrison. At that time – provided everything goes as planned – Curiosity, the most sophisticated exploration vehicle ever sent to another planet, will parachute toward the Martian surface faster than the speed of sound after a nine-month journey through space. And as soon as it sinks its six wheels into the red dust, the two scientists specializing in mineralogy will have not one, but two planets to deal with.
As “primary data downlink leaders” designated by NASA, Downs and Morrison are part of a team of scientists tasked with the identification of rocks that Curiosity will encounter during its two-year expedition across the floor of Gale Crater near the Martian equator. (more…)
Sand dunes on Mars move not unlike those on Earth, despite a much thinner atmosphere and weaker winds, as revealed by images taken with the UA-led HiRISE camera.
NASA’s Mars Reconnaissance Orbiter, or MRO, has revealed that movement in sand dune fields on the Red Planet occurs on a surprisingly large scale, about the same as in dune fields on Earth.
This is unexpected because Mars has a much thinner atmosphere than Earth is only about 1 percent as dense, and its high-speed winds are less frequent and weaker than Earth’s.
For years, researchers debated whether or not sand dunes observed on Mars were mostly fossil features related to past climate, rather than currently active. In the past two years, researchers using images from MRO’s High Resolution Imaging Science Experiment, or HiRISE, camera have detected and reported sand movement. (more…)
A Martian dust devil roughly 12 miles high (20 kilometers) was captured whirling its way along the Amazonis Planitia region of Northern Mars on March 14. It was imaged by the High Resolution Imaging Science Experiment (HiRISE) camera on NASA’s Mars Reconnaissance Orbiter. Despite its height, the plume is little more than three-quarters of a football field wide (70 yards, or 70 meters).
Dust devils occur on Earth as well as on Mars. They are spinning columns of air, made visible by the dust they pull off the ground. Unlike a tornado, a dust devil typically forms on a clear day when the ground is heated by the sun, warming the air just above the ground. As heated air near the surface rises quickly through a small pocket of cooler air above it, the air may begin to rotate, if conditions are just right.(more…)