Tag Archives: graphene

Surprising Control over Photoelectrons from a Topological Insulator

Berkeley Lab scientists discover how a photon beam can flip the spin polarization of electrons emitted from an exciting new material

Plain-looking but inherently strange crystalline materials called 3D topological insulators (TIs) are all the rage in materials science. Even at room temperature, a single chunk of TI is a good insulator in the bulk, yet behaves like a metal on its surface.

Researchers find TIs exciting partly because the electrons that flow swiftly across their surfaces are “spin polarized”: the electron’s spin is locked to its momentum, perpendicular to the direction of travel. These interesting electronic states promise many uses – some exotic, like observing never-before-seen fundamental particles, but many practical, including building more versatile and efficient high-tech gadgets, or, further into the future, platforms for quantum computing. (more…)

Read More

Long Predicted Atomic Collapse State Observed in Graphene

Berkeley Lab researchers recreate elusive phenomenon with artificial nuclei

The first experimental observation of a quantum mechanical phenomenon that was predicted nearly 70 years ago holds important implications for the future of graphene-based electronic devices. Working with microscopic artificial atomic nuclei fabricated on graphene, a collaboration of researchers led by scientists with the U.S. Department of Energy’s Lawrence Berkeley National Laboratory (Berkeley Lab) and the University of California (UC) Berkeley have imaged the “atomic collapse” states theorized to occur around super-large atomic nuclei.

“Atomic collapse is one of the holy grails of graphene research, as well as a holy grail of atomic and nuclear physics,” says Michael Crommie, a physicist who holds joint appointments with Berkeley Lab’s Materials Sciences Division and UC Berkeley’s Physics Department. “While this work represents a very nice confirmation of basic relativistic quantum mechanics predictions made many decades ago, it is also highly relevant for future nanoscale devices where electrical charge is concentrated into very small areas.” (more…)

Read More

IBM Scientists First to Distinguish Individual Molecular Bonds

Atomic force microscopy helps scientists to reveal the bond order and length of bonds within molecules

Technique can be used to study future devices made from graphene

Zurich, Switzerland – 14 Sep 2012: IBM scientists have been able to differentiate the chemical bonds in individual molecules for the first time using a technique known as noncontact atomic force microscopy (AFM).

The results push the exploration of using molecules and atoms at the smallest scale and could be important for studying graphene devices, which are currently being explored by both industry and academia for applications including high-bandwidth wireless communication and electronic displays. (more…)

Read More

A Direct Look at Graphene

Direct Imaging by Berkeley Lab Researchers Confirms the Importance of Electron-Electron Interactions in Graphene

Perhaps no other material is generating as much excitement in the electronics world as graphene, sheets of pure carbon just one atom thick through which electrons can race at nearly the speed of light – 100 times faster than they move through silicon. (more…)

Read More