Berkeley Lab researchers find new mechanism to explain the birth of cloud droplets, could influence climate models
There is enough known about cloud formation that replicating its mechanism has become a staple of the school science project scene. But a new study by scientists at the U.S. Department of Energy’s Lawrence Berkeley National Laboratory (Berkeley Lab) reveals that much more is going on at the microscopic level of cloud formation than previously thought.(more…)
ANN ARBOR — The main job of pollen is to help seed the next generation of trees and plants, but a new study from the University of Michigan and Texas A&M shows that the grains might also seed clouds.(more…)
Weather forecasters on exoplanet GJ 1214b would have an easy job. Today’s forecast: cloudy. Tomorrow: overcast. Extended outlook: more clouds.
That’s the implication of a study led by researchers in the Department of Astronomy and Astrophysics at the University of Chicago who have definitively characterized the atmosphere of a super-Earth class planet orbiting another star for the first time. (more…)
It seems counterintuitive that clouds over the Southern Ocean, which circles Antarctica, would cause rain in Zambia or the tropical island of Java. But new research finds that one of the most persistent biases in global climate models – a phantom band of rainfall just south of the equator that does not occur in reality – is caused by poor simulation of the cloud cover thousands of miles farther to the south.
University of Washington atmospheric scientists hope their results help explain why global climate models mistakenly duplicate the inter-tropical convergence zone, a band of heavy rainfall in the northern tropics, on the other side of the equator. The study appears this week in the Proceedings of the National Academy of Sciences. (more…)
Berkeley Lab’s Chemical Dynamics Beamline points to why isotope ratios in interplanetary dust and meteorites differ from Earth’s
By studying the origins of different isotope ratios among the elements that make up today’s smorgasbord of planets, moons, comets, asteroids, and interplanetary ice and dust, Mark Thiemens and his colleagues hope to learn how our solar system evolved. Thiemens, Dean of the Division of Physical Sciences at the University of California, San Diego, has worked on this problem for over three decades.
In recent years his team has found the Chemical Dynamics Beamline of the Advanced Light Source (ALS) at the U.S. Department of Energy’s Lawrence Berkeley National Laboratory (Berkeley Lab) to be an invaluable tool for examining how photochemistry determines the basic ingredients in the solar system recipe. (more…)
Angelou encourages University community to be ‘a rainbow in the clouds’
Maya Angelou had a special message for the enthusiastic audience that came to hear the renowned Renaissance woman and civil rights activist speak during a sold-out event held Friday evening, Feb. 22, in the University of Delaware’s Bob Carpenter Center.
“I’m going to remind you that you have already been paid for,” Angelou said. “Whether you are white or black or of Asian or Spanish ancestry, gay or straight, you don’t have to apologize to history for anything.” (more…)
On the night of Aug. 5, 2010, as residents slept, water began rushing through Leh, an Indian town in a high desert valley in the Himalayas.
Average total rainfall in the area for August is about a half-inch. During this 24-hour period more than 8 inches fell, causing severe damage and leaving 193 dead, hundreds missing and thousands homeless.
“Flash flooding events don’t happen often but when they do they are some of the scariest, most dangerous and quickest natural disasters that can happen,” said Kristen Rasmussen, a University of Washington graduate student in atmospheric sciences. “But now that we know what types of conditions to look out for, flash flood warnings in remote regions of India might be possible.” (more…)
Earth’s clouds got a little lower — about one percent on average — during the first decade of this century, finds a new NASA-funded university study based on NASA satellite data. The results have potential implications for future global climate.
Scientists at the University of Auckland in New Zealand analyzed the first 10 years of global cloud-top height measurements (from March 2000 to February 2010) from the Multi-angle Imaging SpectroRadiometer (MISR) instrument on NASA’s Terra spacecraft. The study, published recently in the journal Geophysical Research Letters, revealed an overall trend of decreasing cloud height. Global average cloud height declined by around one percent over the decade, or by around 100 to 130 feet (30 to 40 meters). Most of the reduction was due to fewer clouds occurring at very high altitudes. (more…)