Tag Archives: brain region

Mathematical beauty activates same brain region as great art or music

People who appreciate the beauty of mathematics activate the same part of their brain when they look at aesthetically pleasing formula as others do when appreciating art or music, suggesting that there is a neurobiological basis to beauty.

There are many different sources of beauty – a beautiful face, a picturesque landscape, a great symphony are all examples of beauty derived from sensory experiences. But there are other, highly intellectual sources of beauty. Mathematicians often describe mathematical formulae in emotive terms and the experience of mathematical beauty has often been compared by them to the experience of beauty derived from the greatest art. (more…)

Read More

How sleep helps brain learn motor task

Sleep helps the brain consolidate what we’ve learned, but scientists have struggled to determine what goes on in the brain to make that happen for different kinds of learned tasks. In a new study, researchers pinpoint the brainwave frequencies and brain region associated with sleep-enhanced learning of a sequential finger tapping task akin to typing, or playing piano.

PROVIDENCE, R.I. [Brown University] — You take your piano lesson, you go to sleep and when you wake up your fingers are better able to play that beautiful sequence of notes. How does sleep make that difference? A new study helps to explain what happens in your brain during those fateful, restful hours when motor learning takes hold. (more…)

Read More

Exercise reorganizes the brain to be more resilient to stress

Physical activity reorganizes the brain so that its response to stress is reduced and anxiety is less likely to interfere with normal brain function, according to a research team based at Princeton University.

The researchers report in the Journal of Neuroscience that when mice allowed to exercise regularly experienced a stressor — exposure to cold water — their brains exhibited a spike in the activity of neurons that shut off excitement in the ventral hippocampus, a brain region shown to regulate anxiety. (more…)

Read More

Study stops stress-based drug relapse in rats

In a new study in Neuron, scientists identified specific key steps in the chain of events that causes stress-related drug relapse. They identified the exact region of the brain where the events take place in rat models and showed that by blocking a step, they could prevent stress-related relapse.

PROVIDENCE, R.I. [Brown University] — All too often, stress turns addiction recovery into relapse, but years of basic brain research have provided scientists with insight that might allow them develop a medicine to help. A new study in the journal Neuron pinpoints the neural basis for stress-related relapse in rat models to an unprecedented degree. The advance could accelerate progress toward a medicine that prevents stress from undermining addiction recovery. (more…)

Read More

New Insights into the ‘Borderline Personality’ Brain

TORONTO, ON — New work by University of Toronto Scarborough researchers gives the best description yet of the neural circuits that underlie a severe mental illness called Borderline Personality Disorder (BPD), and could lead to better treatments and diagnosis.

The work shows that brain regions that process negative emotions (for example, anger and sadness) are overactive in people with BPD, while brain regions that would normally help damp down negative emotions are underactive. (more…)

Read More

UCLA Scientists Discover Sleeping Brain Behaves as If It’s Remembering Something

UCLA researchers have for the first time measured the activity of a brain region known to be involved in learning, memory and Alzheimer’s disease during sleep. They discovered that this region, called the entorhinal cortex, behaves as if it’s remembering something, even during anesthesia–induced sleep — a finding that counters conventional theories about sleep-time memory consolidation.

The research team simultaneously measured the activity of single neurons from multiple parts of the brain that are involved in memory formation. The technique allowed them to determine which brain region was activating other areas and how that activation was spreading, said the study’s senior author, Mayank R. Mehta, a professor of neurophysics in UCLA’s departments of neurology, neurobiology, and physics and astronomy. (more…)

Read More

More Sophisticated Wiring, Not Just a Bigger Brain, Helped Humans Evolve Beyond Chimps

Human and chimp brains look anatomically similar because both evolved from the same ancestor millions of years ago. But where does the chimp brain end and the human brain begin?

A new UCLA study pinpoints uniquely human patterns of gene activity in the brain that could shed light on how we evolved differently than our closest relative. The identification of these genes could improve understanding of human brain diseases like autism and schizophrenia, as well as learning disorders and addictions.

The research appears Aug. 22 in the advance online edition of the journal Neuron. (more…)

Read More