Tag Archives: biofuels

CAD for RNA

*Joint BioEnergy Institute Researchers Develop CAD-Type Tools for Engineering RNA Control Systems*

The computer assisted design (CAD) tools that made it possible to fabricate integrated circuits with millions of transistors may soon be coming to the biological sciences. Researchers at the U.S. Department of Energy (DOE)’s Joint BioEnergy Institute (JBEI) have developed CAD-type models and simulations for RNA molecules that make it possible to engineer biological components or “RNA devices” for controlling genetic expression  in microbes. This holds enormous potential for microbial-based sustainable production of advanced biofuels, biodegradable plastics, therapeutic drugs and a host of other goods now derived from petrochemicals. (more…)

Read More

New Tool Offers Unprecedented Access for Root Studies

Stanford, CA — Plant roots are fascinating plant organs – they not only anchor the plant, but are also the world’s most efficient mining companies. Roots live in darkness and direct the activities of the other organs, as well as interact with the surrounding environment. Charles Darwin posited in The Power of Movement of Plants that the root system acts as a plant’s brain.

Due to the difficulty of accessing root tissue in intact live plants, research of these hidden parts has always lagged behind research on the more visible parts of plants. But now: a new technology–developed jointly by Carnegie and Stanford University–could revolutionize root research. The findings will be published in the large-scale biology section of the December issue of The Plant Cell. (more…)

Read More

E. Coli Bacteria Engineered to Eat Switchgrass and Make Transportation Fuels

*Joint BioEnergy Institute (JBEI) Researchers Reach Milestone on the Road to Biofuels*

A milestone has been reached on the road to developing advanced biofuels that can replace gasoline, diesel and jet fuels with a domestically-produced clean, green, renewable alternative.

Researchers with the U.S. Department of Energy (DOE)’s Joint BioEnergy Institute (JBEI) have engineered the first strains of  Escherichia coli bacteria that can digest switchgrass biomass and synthesize its sugars into all three of those transportation fuels. What’s more, the microbes are able to do this without any help from enzyme additives. (more…)

Read More

Berkeley Scientists at AAAS Highlight Challenges of Meeting State Energy Goals by 2050

California is showing the way for the rest of the nation in terms of reducing greenhouse gas emissions, having set an ambitious goal to reduce these emissions to 80 percent below 1990 levels by the year 2050. Given that energy demand is projected to double by 2050, experts agree that the state will have to dramatically overhaul its energy systems to achieve its greenhouse gas emission goals.

At the 2011 Annual Meeting of the American Association for the Advancement of Science, some of the specific challenges and issue ahead were discussed in a session titled “Portraits of the California Energy System in 2050: Cutting Emissions by 80 Percent.” Contributing to this discussion were two scientists from Berkeley Lab and one from the Energy Biosciences Institute (EBI), in which Berkeley Lab is a partner. (more…)

Read More

A Wiki for the Biofuels Research Community

Blake Simmons (left) and Harvey Blanch of the Joint BioEnergy Institute led the development of a technoeconomic model for optimizing biorefinery operations. Image cedit: Roy Kaltschmidt, Berkeley Lab Public Affairs

Researchers at the U.S. Department of Energy’s Joint BioEnergy Institute (JBEI) have created a technoeconomic model that should help accelerate the development of a next generation of clean, green biofuels that can compete with gasoline in economics and well as performance. This on-line, wiki-based model enables researchers to pursue the most promising strategies for cost-efficient biorefinery operations by simulating such critical factors as production costs and energy balances under different processing scenarios.

“The high production cost of biofuels has been the main factor limiting their widespread adoption,” says JBEI’s Daniel Klein-Marcuschamer. “We felt that a model of the biorefinery operation that was open, transparent about the assumptions it uses, and updatable by the community of users could aid in guiding research in the direction where it is most likely to reduce the production cost of biofuels.” (more…)

Read More