*The molecular machinery bacteria use to rid themselves of toxic substances including antimicrobial drugs has been studied in detail by a UA-led team of researchers. A better understanding of these mechanisms could lead to new weapons in the fight against pathogens.*
Microbes have colonized virtually every spot on this planet, from deep sea vents spewing scalding seawater laden with heavy metals to the icy pinnacles of the world’s tallest mountain ranges.(more…)
EAST LANSING, Mich. — In a head-to-head battle of harvesting the sun’s energy, solar cells beat plants, according to a new paper in Science. But scientists think they can even up the playing field, says Michigan State University researcher David Kramer.
Plants are less efficient at capturing the energy in sunlight than solar cells mostly because they have too much evolutionary baggage. Plants have to power a living thing, whereas solar cells only have to send electricity down a wire. This is a big difference because if photosynthesis makes a mistake, it makes toxic byproducts that kill the organism. Photosynthesis has to be conservative to avoid killing the organisms it powers. (more…)
*Berkeley Lab scientists decipher immune system for plants beneath our feet*
Those vegetables you had for dinner may have once been protected by an immune system akin to the one that helps you fight disease. Scientists from the U.S. Department of Energy’s Lawrence Berkeley National Laboratory (Berkeley Lab) and the Netherland’s Wageningen University found that plants rely on a complex community of soil microbes to defend themselves against pathogens, much the way mammals harbor a raft of microbes to avoid infections.
The scientists deciphered, for the first time, the group of microbes that enables a patch of soil to suppress a plant-killing pathogen. Previous research on the phenomenon of disease-suppressive soil had identified one or two pathogen-fighting microbes at work. (more…)
Interactive teaching methods significantly improved attendance and doubled both engagement and learning in a large physics class, according to a University of British Columbia study involving University of Colorado Boulder Distinguished Professor Carl Wieman that is being published today in Science.(more…)
University of Georgia researchers define a missing link in how clouds are formed
Some clouds cool the earth. But how are these clouds formed? How does the chemistry of the ocean affect their formation? Is this process affected by climate change? Can humans affect cloud formation to increase the cooling effect of clouds, having positive implications for the health of the planet?(more…)
More than 500 extrasolar planets–planets that orbit stars other than the sun–have been discovered since 1995. But only in the last few years have astronomers observed that in some of these systems, the star is spinning one way and the planet is orbiting that star in the opposite direction.
“That’s really weird, and it’s even weirder because the planet is so close to the star,” said Frederic A. Rasio, a theoretical astrophysicist at Northwestern University. “How can one be spinning one way and the other orbiting exactly the other way? It’s crazy. It so obviously violates our most basic picture of planet and star formation.” (more…)
COLUMBUS, Ohio – A team of researchers is beginning to see exactly what the response to threats looks like in the brain at the cellular and molecular levels.(more…)
A new analysis of data from NASA’s Galileo spacecraft has revealed that beneath the surface of Jupiter’s volcanic moon Io is an “ocean” of molten or partially molten magma.
The finding, from a study published May 13 in the journal Science, is the first direct confirmation of such a magma layer on Io and explains why the moon is the most volcanic object known in the solar system. The research was conducted by scientists from UCLA, UC Santa Cruz and the University of Michigan–Ann Arbor. (more…)