Tag Archives: liquid

First Atomic-Scale Real-Time Movies of Platinum Nanocrystal Growth in Liquids

Berkeley Scientists Create Graphene Liquid Cells for Electron Microscopy Studies of Nanocrystal Formation

They won’t be coming soon to a multiplex near you, but movies showing the growth of platinum nanocrystals at the atomic-scale in real-time have blockbuster potential. A team of scientists with the Lawrence Berkeley National Laboratory (Berkeley Lab) and the University of California (UC) Berkeley has developed a technique for encapsulating liquids of nanocrystals between layers of graphene so that chemical reactions in the liquids can be imaged with an electron microscope. With this technique, movies can be made that provide unprecedented direct observations of physical, chemical and biological phenomena that take place in liquids on the nanometer scale. (more…)

Read More

UCLA Physicists Report Nanotechnology Feat With Proteins

UCLA physicists have made nanomechanical measurements of unprecedented resolution on protein molecules.

The new measurements, by UCLA physics professor Giovanni Zocchi and former UCLA physics graduate student Yong Wang, are approximately 100 times higher in resolution than previous mechanical measurements, a nanotechnology feat which reveals an isolated protein molecule, surprisingly, is neither a solid nor a liquid.

“Proteins are the molecular machines of life, the molecules we are made of,” Zocchi said. “We have found that sometimes they behave as a solid and sometimes as a liquid. (more…)

Read More

Shaken, not Stirred: Berkeley Lab Scientists Spy Molecular Maneuvers

Stir this clear liquid in a glass vial and nothing happens. Shake this liquid, and free-floating sheets of protein-like structures emerge, ready to detect molecules or catalyze a reaction. This isn’t the latest gadget from James Bond’s arsenal—rather, the latest research from the U. S. Department of Energy (DOE)’s Lawrence Berkeley National Laboratory (Berkeley Lab) scientists unveiling how slim sheets of protein-like structures self-assemble. This “shaken, not stirred” mechanism provides a way to scale up production of these two-dimensional nanosheets for a wide range of applications, such as platforms for sensing, filtration and templating growth of other nanostructures.

“Our findings tell us how to engineer two-dimensional, biomimetic materials with atomic precision in water,” said Ron Zuckermann, Director of the Biological Nanostructures Facility at the Molecular Foundry, a DOE nanoscience user facility at Berkeley Lab. “What’s more, we can produce these materials for specific applications, such as a platform for sensing molecules or a membrane for filtration.” (more…)

Read More

Look Ma, No Hands: Yale Engineers Invent a Magnetic Fluid Pump with No Moving Parts

Used in Hollywood and the advertising industry to create exotic special effects, ferrofluids are seemingly magical materials that are both liquid and magnetic at once. In a study published today in Physical Review B, Yale electrical engineering professor Hur Koser and colleagues from the University of Georgia and Massachusetts Institute of Technology demonstrate for the first time an approach that allows ferrofluids to be pumped by magnetic fields alone. The invention could lead to new applications for this mysterious material.

Developed in the 1960s by NASA scientists seeking a non-mechanical method for moving liquid fuels in outer space, ferrofluids are made up of magnetic nanoparticles suspended in liquids such as oil, water, or alcohol. Though numerous industrial, commercial, and biomedical applications for ferrofluids have since been created, the original goal-to pump liquids with no machinery-remained elusive, until now. (more…)

Read More

MU Researcher Studies How Infants Compare Quantities

COLUMBIA, Mo. – Parents are often amazed at how fast their child grows and develops. New research at the University of Missouri has determined that the ability to quantify – even things that are hard to quantify, such as liquid – may develop much sooner than most parents realize. 

University of Missouri researcher Kristy vanMarle, an assistant professor in the Department of Psychological Sciences in the College of Arts and Science, has determined that contrary to what previous studies have shown, infants are able to quantify non-cohesive substances – like sand, water, or even Cheerios – as early as 10 months. As long as the difference between the two substances is large enough, vanMarle has found that infants will choose the larger amount, especially when it comes to food. (more…)

Read More