UA physicists have discovered how to change the crystal structure of graphene. The finding could lead to smaller and faster microprocessors.
A University of Arizona-led team of physicists has discovered how to change the crystal structure of graphene, more commonly known as pencil lead, with an electric field, an important step toward the possible use of graphene in microprocessors that would be smaller and faster than current, silicon-based technology. (more…)
Understanding the source and orientation of light in light-emitting thin films — now possible with energy-momentum spectroscopy — could lead to better LEDs, solar cells, and other devices that use layered nanomaterials.
PROVIDENCE, R.I. [Brown University] — A multi-university research team has used a new spectroscopic method to gain a key insight into how light is emitted from layered nanomaterials and other thin films.
The technique, called energy-momentum spectroscopy, enables researchers to look at the light emerging from a thin film and determine whether it is coming from emitters oriented along the plane of the film or from emitters oriented perpendicular to the film. Knowing the orientations of emitters could help engineers make better use of thin-film materials in optical devices like LEDs or solar cells. (more…)
Berkeley Scientists Create Graphene Liquid Cells for Electron Microscopy Studies of Nanocrystal Formation
They won’t be coming soon to a multiplex near you, but movies showing the growth of platinum nanocrystals at the atomic-scale in real-time have blockbuster potential. A team of scientists with the Lawrence Berkeley National Laboratory (Berkeley Lab) and the University of California (UC) Berkeley has developed a technique for encapsulating liquids of nanocrystals between layers of graphene so that chemical reactions in the liquids can be imaged with an electron microscope. With this technique, movies can be made that provide unprecedented direct observations of physical, chemical and biological phenomena that take place in liquids on the nanometer scale. (more…)
UA physicists are making discoveries that may advance electronic circuit technology.
Graphite, more commonly known as pencil lead, could become the next big thing in the quest for smaller and less power-hungry electronics.
Resembling chicken wire on a nano scale, graphene – single sheets of graphite – is only one atom thick, making it the world’s thinnest material. Two million graphene sheets stacked up would not be as thick as a credit card. (more…)
‘Wonder material’ may hold key to fast, inexpensive genetic sequencing
Look at the tip of that old pencil in your desk drawer, and what you’ll see are layers of graphite that are thousands of atoms thick. Use the pencil to draw a line on a piece of paper, and the mark you’ll see on the page is made up of hundreds of one-atom layers.
But when scientists found a way—using, essentially, a piece of ordinary sticky tape—to peel off a layer of graphite that was just a single atom thick, they called the two-dimensional material graphene and, in 2010, won the Nobel Prize in physics for the discovery. (more…)