Researchers at UCLA say it’s not just what you eat that makes those pants tighter — it’s also genetics. In a new study, scientists discovered that body-fat responses to a typical fast-food diet are determined in large part by genetic factors, and they have identified several genes they say may control those responses.
The study is the first of its kind to detail metabolic responses to a high-fat, high-sugar diet in a large and diverse mouse population under defined environmental conditions, modeling closely what is likely to occur in human populations. The researchers found that the amount of food consumed contributed only modestly to the degree of obesity. (more…)
Joint BioEnergy Institute Researchers Find New Access to Abundant Biomass for Advanced Biofuels
After cellulose, xylan is the most abundant biomass material on Earth, and therefore represents an enormous potential source of stored solar energy for the production of advance biofuels. A major roadblock, however, has been extracting xylan from plant cell walls. Researchers with the U.S. Department of Energy (DOE)’s Joint BioEnergy Institute (JBEI) have taken a significant step towards removing this roadblock by identifying a gene in rice plants whose suppression improves both the extraction of xylan and the overall release of the sugars needed to make biofuels.
The newly identified gene – dubbed XAX1 – acts to make xylan less extractable from plant cell walls. JBEI researchers, working with a mutant variety of rice plant – dubbed xax1 – in which the XAX1 gene has been “knocked-out” found that not only was xylan more extractable, but saccharification – the breakdown of carbohydrates into releasable sugars – also improved by better than 60-percent. Increased saccharification is key to more efficient production of advanced biofuels. (more…)
Big trees three or more feet in diameter accounted for nearly half the biomass measured at a Yosemite National Park site, yet represented only 1 percent of the trees growing there.
This means just a few towering white fir, sugar pine and incense cedars per acre at the Yosemite site are disproportionately responsible for photosynthesis, converting carbon dioxide into plant tissue and sequestering that carbon in the forest, sometimes for centuries, according to James Lutz, a University of Washington research scientist in environmental and forest sciences. He’s lead author of a paper on the largest quantitative study yet of the importance of big trees in temperate forests being published online May 2 on PLoS ONE. (more…)
Stanford, CA — Plant roots are fascinating plant organs – they not only anchor the plant, but are also the world’s most efficient mining companies. Roots live in darkness and direct the activities of the other organs, as well as interact with the surrounding environment. Charles Darwin posited in The Power of Movement of Plants that the root system acts as a plant’s brain.
Due to the difficulty of accessing root tissue in intact live plants, research of these hidden parts has always lagged behind research on the more visible parts of plants. But now: a new technology–developed jointly by Carnegie and Stanford University–could revolutionize root research. The findings will be published in the large-scale biology section of the December issue of The Plant Cell. (more…)
Children as young as age 2 are seeing more fast food ads than ever before, and restaurants rarely offer parents the healthy kids’ meal choices, according to a new study from Yale’s Rudd Center for Food Policy & Obesity. The new evaluation, the most comprehensive study of fast food nutrition and marketing ever conducted, shows that fast food marketers target children across a variety of media and in restaurants. In addition, the study finds that restaurants provide largely unhealthy defaults for the side dishes and drinks that come with kids’ meals. The detailed findings of this study will be presented in Denver today during the American Public Health Association’s annual meeting. (more…)