Although the time and cost of sequencing an entire human genome has plummeted, analyzing the resulting genetic information— three billion base pairs from a single genome—can take many months.
In the journal Bioinformatics, however, a University of Chicago-based team—working with Beagle, one of the world’s fastest supercomputers devoted to life sciences—reports that genome analysis can be radically accelerated. This computer, based at Argonne National Laboratory, is able to analyze 240 full genomes in about two days. (more…)
For the first time, scientists have used new technology which analyses the whole genome to find the cause of a genetic disease in what was previously referred to as “junk DNA”.
Pancreatic agenesis results in babies being born without a pancreas, leaving them with a lifetime of diabetes and problems digesting food.
In a breakthrough for genetic research, teams led by the University of Exeter Medical School and Imperial College London found that the condition is most commonly caused by mutations in a newly identified gene regulatory element in a remote part of the genome, which can now be explored thanks to advances in genetic sequencing. (more…)
The newly sequenced genome of the carnivorous bladderwort plant contradicts the notion that vast quantities of noncoding DNA are crucial for complex life. UA researchers helped solve the puzzle by providing specialized genome analyses and computational software.(more…)
Collaboration Led by Berkeley Lab Researchers Creates High-Resolution Map of Gene Regulatory Elements in the Brain
Future research into the underlying causes of neurological disorders such as autism, epilepsy and schizophrenia, should greatly benefit from a first-of-its-kind atlas of gene-enhancers in the cerebrum (telencephalon). This new atlas, developed by a team led by researchers with the U.S. Department of Energy (DOE)’s Lawrence Berkeley National Laboratory (Berkeley Lab) is a publicly accessible Web-based collection of data that identifies and locates thousands of gene-regulating elements in a region of the brain that is of critical importance for cognition, motor functions and emotion.
“Understanding how the brain develops and functions, and how it malfunctions in neurological disorders, remains one of the most daunting challenges in contemporary science,” says Axel Visel, a geneticist with Berkeley Lab’s Genomics Division. “We’ve created a genome-wide digital atlas of gene enhancers in the human brain – the switches that tell genes when and where they need to be switched on or off. This enhancer atlas will enable other scientists to study in more detail how individual genes are regulated during development of the brain, and how genetic mutations may impact human neurological disorders.” (more…)