Berkeley Lab research could lead to new ways to fight cancer before it develops
Every day, some of your cells stop dividing, and that’s a good thing. Cells that proliferate indefinitely are immortal, an essential early step in the development of most malignant tumors. (more…)
A study led by researchers from Lawrence Berkeley National Laboratory has found for the first time that thirdhand smoke—the noxious residue that clings to virtually all surfaces long after the secondhand smoke from a cigarette has cleared out—causes significant genetic damage in human cells.(more…)
Scientists from Berkeley Lab and the Max Planck Institute for Terrestrial Microbiology analyze a unique microbial motor
The protein structure of the motor that propels archaea has been characterized for the first time by a team of scientists from the U.S. Department of Energy’s Lawrence Berkeley National Laboratory (Berkeley Lab) and Germany’s Max Planck Institute (MPI) for Terrestrial Microbiology.
The motility structure of this third domain of life has long been called a flagellum, a whip-like filament that, like the well-studied bacterial flagellum, rotates like a propeller. But although the archaeal structure has a similar function, it is so profoundly different in structure, genetics, and evolution that the researchers argue it deserves its own name: archaellum. (more…)
COLUMBUS, Ohio – For the first time, researchers have found a way to inject a precise dose of a gene therapy agent directly into a single living cell without a needle.
The technique uses electricity to “shoot” bits of therapeutic biomolecules through a tiny channel and into a cell in a fraction of a second.
L. James Lee and his colleagues at Ohio State University describe the technique in the online edition of the journal Nature Nanotechnology, where they report successfully inserting specific doses of an anti-cancer gene into individual leukemia cells to kill them. (more…)
AUSTIN, Texas — The three-dimensional structure of a site on an influenza B virus protein that suppresses human defenses to infection has been determined by researchers at Rutgers University and The University of Texas at Austin.
The discovery could help scientists develop drugs to fight seasonal influenza epidemics caused by the common influenza B strain.
Their discovery also helps explain how influenza B is limited to humans, and why it cannot be as virulent as A strains that incorporate new genes from influenza viruses that infect other species. (more…)