Tag Archives: earth

Watching Earth’s Winds, On a Shoestring

Built with spare parts and without a moment to spare, the International Space Station (ISS)-RapidScat isn’t your average NASA Earth science mission.

Short for Rapid Scatterometer, ISS-RapidScat will monitor ocean winds from the vantage point of the space station . It will join a handful of other satellite scatterometer missions that make essential measurements used to support weather and marine forecasting, including the tracking of storms and hurricanes. It will also help improve our understanding of how interactions between Earth’s ocean and atmosphere influence our climate. (more…)

Read More

Managing the Deluge of ‘Big Data’ From Space

For NASA and its dozens of missions, data pour in every day like rushing rivers. Spacecraft monitor everything from our home planet to faraway galaxies, beaming back images and information to Earth. All those digital records need to be stored, indexed and processed so that spacecraft engineers, scientists and people across the globe can use the data to understand Earth and the universe beyond.

At NASA’s Jet Propulsion Laboratory in Pasadena, Calif., mission planners and software engineers are coming up with new strategies for managing the ever-increasing flow of such large and complex data streams, referred to in the information technology community as “big data.” (more…)

Read More

How red crabs on Christmas Island speak for the tropics

Each year, the land-dwelling Christmas Island red crab takes an arduous and shockingly precise journey from its earthen burrow to the shores of the Indian Ocean where weeks of mating and egg laying await.

Native to the Australian territories of Christmas Island and the Cocos (Keeling) Islands, millions of the crabs start rolling across the island roads and landscape in crimson waves when the November rains begin. After a two-week scuttle to the sea, the male crab sets up and defends a mating burrow for himself and a female of his kind, the place where she will incubate their clutch for another two weeks. Before the morning of the high tide that precedes the December new moon, the females must emerge to release their millions of eggs into the ocean. A month later, the next generation of crabs comes ashore. (more…)

Read More

UCLA scientists explain the formation of unusual ring of radiation in space

Since the discovery of the Van Allen radiation belts in 1958, space scientists have believed these belts encircling the Earth consist of two doughnut-shaped rings of highly charged particles — an inner ring of high-energy electrons and energetic positive ions and an outer ring of high-energy electrons.

In February of this year, a team of scientists reported the surprising discovery of a previously unknown third radiation ring — a narrow one that briefly appeared between the inner and outer rings in September 2012 and persisted for a month. (more…)

Read More

Protecting 17 Percent of Earth’s Land May Preserve 67 Percent of Its Plant Species

Protecting key regions that comprise just 17 percent of Earth’s land may help preserve more than two-thirds of its plant species, according to a new study by an international team of scientists, including a biologist from North Carolina State University.

The researchers from Duke University, NC State and Microsoft Research used computer algorithms to identify the smallest set of regions worldwide that could contain the largest numbers of plant species. They published their findings in the journal Science. (more…)

Read More

Littlest Continent Had Biggest Role in Sea Level Drop

A unique and complex set of circumstances came together over Australia from 2010 to 2011 to cause Earth’s smallest continent to be the biggest contributor to the observed drop in global sea level rise during that time, finds a new study co-authored and co-funded by NASA.

In 2011, scientists at NASA’s Jet Propulsion Laboratory in Pasadena, Calif., and the University of Colorado at Boulder reported that between early 2010 and summer 2011, global sea level fell sharply, by about a quarter of an inch, or half a centimeter. Using data from the NASA/German Aerospace Center’s Gravity Recovery and Climate Experiment (GRACE) spacecraft, they showed that the drop was caused by the very strong La Nina that began in late 2010. That La Nina changed rainfall patterns all over our planet, moving huge amounts of Earth’s water from the ocean to the continents. The phenomenon was short-lived, however. (more…)

Read More

Scientists want a detailed picture of Mount St. Helens’ plumbing

Earth scientists are laying plans for a two-year study covering a broad area of southwestern Washington to develop a better understanding of how Mount St. Helens gets its supply of volcanic magma.

“The main goal is to understand the plumbing system of the mountain,” said Kenneth Creager, a University of Washington professor of Earth and space sciences who is leading the study. (more…)

Read More

How Did Earth’s Primitive Chemistry Get Kick Started?

How did life on Earth get started? Three new papers co-authored by Mike Russell, a research scientist at NASA’s Jet Propulsion Laboratory, Pasadena, Calif., strengthen the case that Earth’s first life began at alkaline hydrothermal vents at the bottom of oceans. Scientists are interested in understanding early life on Earth because if we ever hope to find life on other worlds — especially icy worlds with subsurface oceans such as Jupiter’s moon Europa and Saturn’s Enceladus — we need to know what chemical signatures to look for.

Two papers published recently in the journal Philosophical Transactions of the Royal Society B provide more detail on the chemical and precursor metabolic reactions that have to take place to pave the pathway for life. Russell and his co-authors describe how the interactions between the earliest oceans and alkaline hydrothermal fluids likely produced acetate (comparable to vinegar). The acetate is a product of methane and hydrogen from the alkaline hydrothermal vents and carbon dioxide dissolved in the surrounding ocean. Once this early chemical pathway was forged, acetate could become the basis of other biological molecules. They also describe how two kinds of “nano-engines” that create organic carbon and polymers — energy currency of the first cells — could have been assembled from inorganic minerals. (more…)

Read More