Tag Archives: CERN

What’s Happening with the Higgs Boson

Berkeley Lab scientists, major contributors to the ATLAS experiment at the Large Hadron Collider, explain what the excitement is about

CERN, the European Organization for Nuclear Research headquartered in Geneva, Switzerland, will hold a seminar early in the morning on July 4 to announce the latest results from ATLAS and CMS, two major experiments at the Large Hadron Collider (LHC) that are searching for the Higgs boson. Both experimental teams are working down to the wire to finish analyzing their data, and to determine exactly what can be said about what they’ve found.

“We do not yet know what will be shown on July 4th,” says Ian Hinchliffe, a theoretical physicist in the Physics Division at the U.S. Department of Energy’s Lawrence Berkeley National Laboratory (Berkeley Lab), who heads the Lab’s participation in the ATLAS experiment. “I have seen many conjectures on the blogs about what will be shown: these are idle speculation. Things are moving very fast this week, and it’s an exciting time at CERN. Many years of hard work are coming to fruition.” (more…)

Read More

The First Spectroscopic Measurement of an Anti-Atom

*Berkeley Lab scientists helped build and operate the ALPHA antimatter trap at CERN, which has now probed the internal structure of the antihydrogen atom for the first time, taking the first step toward possible new insights into the difference between matter and antimatter*

The ALPHA collaboration at CERN in Geneva has scored another coup on the antimatter front by performing the first-ever spectroscopic measurements of the internal state of the antihydrogen atom. Their results are reported in a forthcoming issue of Nature and are now online.

Ordinary hydrogen atoms are the most plentiful in the universe, and also the simplest – so simple, in fact, that some of the most fundamental physical constants have been discovered by measuring the tiny energy shifts resulting from the magnetic and electric interactions of hydrogen’s proton nucleus with its single orbiting electron. (more…)

Read More

When Matter Melts

*By comparing theory with data from STAR, Berkeley Lab scientists and their colleagues map phase changes in the quark-gluon plasma*

In its infancy, when the universe was a few millionths of a second old, the elemental constituents of matter moved freely in a hot, dense soup of quarks and gluons. As the universe expanded, this quark–gluon plasma quickly cooled, and protons and neutrons and other forms of normal matter “froze out”: the quarks became bound together by the exchange of gluons, the carriers of the color force.

“The theory that describes the color force is called quantum chromodynamics, or QCD,” says Nu Xu of the U.S. Department of Energy’s Lawrence Berkeley National Laboratory (Berkeley Lab), the spokesperson for the STAR experiment at the Relativistic Heavy Ion Collider (RHIC) at DOE’s Brookhaven National Laboratory. “QCD has been extremely successful at explaining interactions of quarks and gluons at short distances, such as high-energy proton and antiproton collisions at Fermi National Accelerator Laboratory. But in bulk collections of matter – including the quark-gluon plasma – at longer distances or smaller momentum transfer, an approach called lattice gauge theory has to be used.” (more…)

Read More

ALPHA Stores Antimatter Atoms Over a Quarter of an Hour – and Still Counting

*Berkeley Lab physicists join with their international colleagues in reaching a new frontier in antimatter science*

The ALPHA Collaboration, an international team of scientists working at CERN in Geneva, Switzerland, has reported storing a total of 309 atoms of antihydrogen, some for up to 1,000 seconds (almost 17 minutes), with an indication of much longer storage time as well.

ALPHA announced in November, 2010, that they had succeeded in storing antimatter atoms for the first time ever, having captured 38 atoms of antihydrogen and storing each for a sixth of a second. In the weeks following, ALPHA continued to collect anti-atoms and hold them for longer and longer times. (more…)

Read More

Anti-Helium Discovered in the Heart of STAR

*Berkeley Lab nuclear scientists join with their international colleagues in the latest record-breaking discovery at RHIC*

Eighteen examples of the heaviest antiparticle ever found, the nucleus of antihelium-4, have been made in the STAR experiment at RHIC, the Relativistic Heavy Ion Collider at the U.S. Department of Energy’s Brookhaven National Laboratory.

“The STAR experiment is uniquely capable of finding antihelium‑4,” says the STAR experiment’s spokesperson, Nu Xu, of the Nuclear Science Division (NSD) at Lawrence Berkeley National Laboratory (Berkeley Lab). “STAR already holds the record for massive antiparticles, last year having identified the anti-hypertriton, which contains three constituent antiparticles. With four antinucleons, antihelium-4 is produced at a rate a thousand times lower yet. To identify the 18 examples required sifting through the debris of a billion gold-gold collisions.” (more…)

Read More

IBM Honors the 25th Anniversary of High-Temperature Superconductivity

*IBM scientists, J. Georg Bednorz and K. Alex Muller, discovered the first successful high-temperature superconductor using a breakthrough ceramic material*

ZURICH – 18 Apr 2011: Twenty-five years ago IBM scientists, J. Georg Bednorz and K. Alex Muller altered the landscape of physics when they observed superconductivity in an oxide material at a temperature 50 percent higher(1), (-238 deg C, -397 deg F) than what was previously known. This discovery opened an entirely new chapter in the field of physics and earned them the Nobel Prize for Physics in 1987.

Their now seminal paper titled, “Possible High Tc Superconductivity in the Ba – La – Cu – O System”(2) was received by the peer-reviewed journal Zeitschrift fur Physik B on 17 April 1986. (more…)

Read More

Go Ask ALICE: Learning About the Big Bang

Nearly 14 billion years ago, the universe began with a bang — a big one.

Scientists believe that the universe and everything within it began as an extremely hot, dense “soup” that eventually gave rise to galaxies, stars, planets and life and that continues to expand to this day.

Now scientists around the world are pushing back the frontiers of our understanding about the moment the universe was born using the Large Hadron Collider (LHC), a giant particle accelerator at CERN (the European Organization for Nuclear Research) near Geneva, Switzerland. (more…)

Read More