Tag Archives: caltech

Hydrogen Fuel from Sunlight

Berkeley Lab Researchers at Joint Center for Artificial Photosynthesis Make Unique Semiconductor/Catalyst Construct

In the search for clean, green sustainable energy sources to meet human needs for generations to come, perhaps no technology matches the ultimate potential of artificial photosynthesis. Bionic leaves that could produce energy-dense fuels from nothing more than sunlight, water and atmosphere-warming carbon dioxide, with no byproducts other than oxygen, represent an ideal alternative to fossil fuels but also pose numerous scientific challenges. A major step toward meeting at least one of these challenges has been achieved by researchers with the U.S. Department of Energy (DOE)’s Lawrence Berkeley National Laboratory (Berkeley Lab) working at the Joint Center for Artificial Photosynthesis (JCAP).

“We’ve developed a method by which molecular hydrogen-producing catalysts can be interfaced with a semiconductor that absorbs visible light,” says Gary Moore, a chemist with Berkeley Lab’s Physical Biosciences Division and principal investigator for JCAP. “Our experimental results indicate that the catalyst and the light-absorber are interfaced structurally as well as functionally.” (more…)

Read More

Testing Artificial Photosynthesis

Berkeley Lab Researchers Develop Fully Integrated Microfluidic Test-bed for Solar-driven Electrochemical Energy Conversion Systems

With the daily mean concentrations of atmospheric carbon dioxide having reached 400 parts-per-million for the first time in human history, the need for carbon-neutral alternatives to fossil fuel energy has never been more compelling. With enough energy in one hour’s worth of global sunlight to meet all human needs for a year, solar technologies are an ideal solution. However, a major challenge is to develop efficient ways to convert solar energy into electrochemical energy on a massive-scale. A key to meeting this challenge may lie in the ability to test such energy conversion schemes on the micro-scale.

Berkeley Lab researchers, working at the Joint Center for Artificial Photosynthesis (JCAP), have developed the first fully integrated microfluidic test-bed for evaluating and optimizing solar-driven electrochemical energy conversion systems. This test-bed system has already been used to study schemes for photovoltaic electrolysis of water, and can be readily adapted to study proposed artificial photosynthesis and fuel cell technologies. (more…)

Read More

Shot Away from its Companion, Giant Star Makes Waves

Like a ship plowing through still waters, the giant star Zeta Ophiuchi is speeding through space, making waves in the dust ahead. NASA’s Spitzer Space Telescope has captured a dramatic, infrared portrait of these glowing waves, also known as a bow shock.

Astronomers theorize that this star was once sitting pretty next to a companion star even heftier than itself. But when that star exploded, Zeta Ophiuchi was kicked away and sent flying. Zeta Ophiuchi, which is 20 times more massive and 80,000 times brighter than our sun, is racing along at about 54,000 mph (24 kilometers per second). (more…)

Read More

Meet a Face Behind the MIRI

This summer welcomed the delivery of the James Webb Space Telescope’s first flight instrument, the Mid-Infrared Instrument (MIRI). The instrument will peer out into the farthest depths of the cosmos and capture light showcasing star and galaxy formation.

MIRI’s design, assembly and journey were made possible because of a collaboration between a European consortium of institutes that developed the instrument in a partnership with NASA’s Jet Propulsion Laboratory, Pasadena, Calif., working with the European Space Agency, University of Arizona and NASA. (more…)

Read More

The Flowing Sands of Mars

Sand dunes on Mars move not unlike those on Earth, despite a much thinner atmosphere and weaker winds, as revealed by images taken with the UA-led HiRISE camera.

NASA’s Mars Reconnaissance Orbiter, or MRO, has revealed that movement in sand dune fields on the Red Planet occurs on a surprisingly large scale, about the same as in dune fields on Earth.

This is unexpected because Mars has a much thinner atmosphere than Earth is only about 1 percent as dense, and its high-speed winds are less frequent and weaker than Earth’s.

For years, researchers debated whether or not sand dunes observed on Mars were mostly fossil features related to past climate, rather than currently active. In the past two years, researchers using images from MRO’s High Resolution Imaging Science Experiment, or HiRISE, camera have detected and reported sand movement. (more…)

Read More

NASA Map Sees Earth’s Trees in a New Light

PASADENA, Calif. – A NASA-led science team has created an accurate, high-resolution map of the height of Earth’s forests. The map will help scientists better understand the role forests play in climate change and how their heights influence wildlife habitats within them, while also helping them quantify the carbon stored in Earth’s vegetation.

Scientists from NASA’s Jet Propulsion Laboratory, Pasadena, Calif.; the University of Maryland, College Park; and Woods Hole Research Center, Falmouth, Mass., created the map using 2.5 million carefully screened, globally distributed laser pulse measurements from space. The light detection and ranging (lidar) data were collected in 2005 by the Geoscience Laser Altimeter System instrument on NASA’s Ice, Cloud and land Elevation Satellite (ICESat). (more…)

Read More

NASA’s Kepler Mission Finds Three Smallest Exoplanets

PASADENA, Calif. – Astronomers using data from NASA’s Kepler mission have discovered the three smallest planets yet detected orbiting a star beyond our sun. The planets orbit a single star, called KOI-961, and are 0.78, 0.73 and 0.57 times the radius of Earth. The smallest is about the size of Mars.

All three planets are thought to be rocky like Earth but orbit close to their star, making them too hot to be in the habitable zone, which is the region where liquid water could exist. Of the more than 700 planets confirmed to orbit other stars, called exoplanets, only a handful are known to be rocky. (more…)

Read More

JPL-Developed Clean Energy Technology Moves Forward

A team of scientists at NASA’s Jet Propulsion Laboratory in Pasadena, Calif., in partnership with the University of Southern California in Los Angeles, developed a Direct Methanol Fuel Cell technology for future Department of Defense and commercial applications. Recently, USC and the California Institute of Technology in Pasadena, which manages JPL for NASA, awarded a license to SFC Energy, Inc., the U.S. affiliate of SFC Energy AG. The non-exclusive license for the technology will facilitate the expansion of the company’s methanol fuel cell products into the U.S. market. (more…)

Read More