Tag Archives: touch

Freezing Electrons in Flight

Using the world’s fastest laser pulses, which can freeze the ultrafast motion of electrons and atoms, UA physicists have caught the action of molecules breaking apart and electrons getting knocked out of atoms. Their research helps us better understand molecular processes and ultimately be able to control them in many possible applications.

In 1878, a now iconic series of photographs instantly solved a long-standing mystery: Does a galloping horse touch the ground at all times? (It doesn’t.) The images of Eadweard Muybridge taken alongside a racetrack marked the beginning of high-speed photography.

Approximately 134 years later, researchers in the University of Arizona department of physics have solved a similar mystery, one in which super-excited oxygen molecules have replaced the horse, and ultrafast, high-energy laser flashes have replaced Muybridge’s photo emulsion plates. (more…)

Read More

New Study to Test Unusual Hypothesis on Beta Brainwaves

Beta oscillations are tightly linked to Parkinson’s disease and the ability to process sensory information, such as touch. Two neuroscientists have brought their collaboration to Brown University and won funding from the National Science Foundation to see if they can finally provide a definitive, if unorthodox, explanation for beta brainwaves.

Before she could seek to convince the world that her computer model of a key brain circuit explains a fundamental, 80-year-old mystery of neuroscience with potential relevance to Parkinson’s disease, Stephanie Jones sought to convince Christopher Moore. The new Brown neuroscience professors are now close collaborators, but when they first started talking about the beta oscillations of the cortex, Moore thought Jones was plain wrong, if not a bit nuts. (more…)

Read More

Berkeley Lab Researchers Create First of Its Kind Gene Map of Sulfate-reducing Bacterium: Work Holds Implications for Future Bioremediation Efforts

Critical genetic secrets of a bacterium that holds potential for removing toxic and radioactive waste from the environment have been revealed in a study by researchers with the U.S. Department of Energy (DOE)’s Lawrence Berkeley National Laboratory (Berkeley Lab). The researchers have provided the first ever map of the genes that determine how these bacteria interact with their surrounding environment.

“Knowing how bacteria respond to environmental changes is crucial to our understanding of how their physiology tracks with consequences that are both good, such as bioremediation, and bad, such as biofouling,” says Aindrila Mukhopadhyay, a chemist with Berkeley Lab’s Physical Biosciences Division, who led this research. “We have reported the first systematic mapping of the genes in a sulfate-reducing bacterium – Desulfovibrio vulgaris – that regulate the mechanisms by which the bacteria perceive and respond to environmental signals.” (more…)

Read More