Tag Archives: morgan price

Expressly Unfit for the Laboratory

Berkeley Lab Researchers Find Little Correlation Between Microbial Gene Expression and Environmental Conditions in the Laboratory

A new study challenges the orthodoxy of microbiology, which holds that in response to environmental changes, bacterial genes will boost production of needed proteins and decrease production of those that aren’t. Researchers with the U.S. Department of Energy (DOE)’s Lawrence Berkeley National Laboratory (Berkeley Lab) found that for bacteria in the laboratory there was little evidence of adaptive genetic response. In fact, most bacterial genes appear to be regulated by signals unrelated to their function.

“Gene regulation in bacteria is usually described as an adaptive response to an environmental change so that genes are expressed only when they are required, but we’ve shown that in the laboratory gene regulation is often maladaptive,” says Adam Arkin, a systems and synthetic biologist and director of Berkeley Lab’s Physical Biosciences Division. “From our results, we propose that most bacterial genes are under indirect control, which means their expression is a response to signals not directly related to their function, and that their regulatory mechanisms perform poorly in the artificial conditions of a laboratory.” (more…)

Read More

Berkeley Lab Researchers Create First of Its Kind Gene Map of Sulfate-reducing Bacterium: Work Holds Implications for Future Bioremediation Efforts

Critical genetic secrets of a bacterium that holds potential for removing toxic and radioactive waste from the environment have been revealed in a study by researchers with the U.S. Department of Energy (DOE)’s Lawrence Berkeley National Laboratory (Berkeley Lab). The researchers have provided the first ever map of the genes that determine how these bacteria interact with their surrounding environment.

“Knowing how bacteria respond to environmental changes is crucial to our understanding of how their physiology tracks with consequences that are both good, such as bioremediation, and bad, such as biofouling,” says Aindrila Mukhopadhyay, a chemist with Berkeley Lab’s Physical Biosciences Division, who led this research. “We have reported the first systematic mapping of the genes in a sulfate-reducing bacterium – Desulfovibrio vulgaris – that regulate the mechanisms by which the bacteria perceive and respond to environmental signals.” (more…)

Read More