PASADENA, Calif. — NASA’s car-sized Curiosity rover has begun monitoring space radiation during its 8-month trip from Earth to Mars. The research will aid in planning for future human missions to the Red Planet.
Curiosity launched on Nov. 26 from Cape Canaveral, Fla., aboard the Mars Science Laboratory. The rover carries an instrument called the Radiation Assessment Detector (RAD) that monitors high-energy atomic and subatomic particles from the sun, distant supernovas and other sources. (more…)
About 3,700 years ago, people on Earth would have seen a brand-new bright star in the sky. It slowly dimmed out of sight and was eventually forgotten, until modern astronomers later found its remains, called Puppis A. In this new image from NASA’s Wide-field Infrared Survey Explorer (WISE), Puppis A looks less like the remains of a supernova explosion and more like a red rose.
Puppis A (pronounced PUP-pis) was formed when a massive star ended its life in a supernova, the most brilliant and powerful form of an explosion in the known universe. The expanding shock waves from that explosion are heating up the dust and gas clouds surrounding the supernova, causing them to glow and appear red in this infrared view. While much of the material from that original star was violently thrown out into space, some of it remained in an incredibly dense object called a neutron star. This particular neutron star (too faint to be seen in this image) is moving inexplicably fast: over 3 million miles per hour! Astronomers are perplexed over its absurd speed, and have nicknamed the object the “Cosmic Cannonball.” (more…)
Animal’s brains are only roughly aware of how high-up they are in space, meaning that in terms of altitude the brain’s ‘map’ of space is surprisingly flat, according to new research.
In a study published online in Nature Neuroscience, scientists studied cells in or near a part of the brain called the hippocampus, which forms the brain’s map of space, to see whether they were activated when rats climbed upwards. (more…)
*MU vice chancellor led committee that focused on fundamental physics research projects*
COLUMBIA, Mo. — During the past 60 years, humans have built rockets, walked on the moon and explored the outer reaches of space with probes and telescopes. During these trips in space, research has been conducted to learn more about life and space. Recently, a group of prominent researchers from across the country published a report through the National Academy of Sciences that is intended as a guide as NASA plans the next 10 years of research in space. Rob Duncan, the University of Missouri Vice Chancellor for Research, led the team that developed a blueprint for fundamental physics research in space for the next 10 years. (more…)
As NASA’s Voyager 2 spacecraft made the only close approach to date of our mysterious seventh planet Uranus 25 years ago, Project Scientist Ed Stone and the Voyager team gathered at NASA’s Jet Propulsion Laboratory, Pasadena, Calif., to pore over the data coming in.
Images of the small, icy Uranus moon Miranda were particularly surprising. Since small moons tend to cool and freeze over rapidly after their formation, scientists had expected a boring, ancient surface, pockmarked by crater-upon-weathered-crater. Instead they saw grooved terrain with linear valleys and ridges cutting through the older terrain and sometimes coming together in chevron shapes. They also saw dramatic fault scarps, or cliffs. All of this indicated that periods of tectonic and thermal activity had rocked Miranda’s surface in the past. (more…)
*Ordinary drinking glasses and atmospheric dust particles break apart in similar patterns*
Clues to future climate may be found in the way an ordinary drinking glass shatters.
Results of a study published this week in the journal Proceedings of the National Academy of Sciences find that microscopic particles of dust can break apart in patterns that are similar to the fragment patterns of broken glass and other brittle objects. (more…)