In their search for habitable worlds, astronomers have started to consider exomoons, or those likely orbiting planets outside the solar system. In a new study, a pair of researchers has found that exomoons are just as likely to support life as exoplanets.
ANCHORAGE, Alaska – Even small telescopes can make big discoveries.
Though the KELT North telescope in southern Arizona carries a lens no more powerful than a high-end digital camera, it’s just revealed the existence of two very unusual faraway planets.
One planet is a massive, puffed-up oddity that could change ideas of how solar systems evolve. The other orbits a very bright star, and will allow astronomers to make detailed measurements of the atmospheres of these bizarre worlds. (more…)
A University of Exeter astrophysicist has shown what sunsets look like on planets outside our solar system.
He has worked out the colour of sunsets on two planets: HD 209458 b and HD 189733 b, known as ‘extrasolar planets’ because they are outside our solar system.
Extrasolar planets orbit stars, in a similar way to the Earth orbiting the Sun. Professor Frédéric Pont of the University of Exeter has used the extrasolar planets’ ‘transmission spectrum’, taken by the Hubble Space Telescope, to work out the colour of the ‘sunsets’ created by these stars.
Writing on the website ExoClimes.com, where he has posted the two sunset images he has produced, Professor Pont said: “Unlike its sister planet HD ’189, the planet HD ’209 (‘Osiris’) has a sunset that looks truly alien. The star is white outside the atmosphere, since its temperature is close to that of the Sun. It then acquires a bluish tinge as it sinks deeper, because the absorption by the broad wings of the neutral sodium lines (the spectral lines responsible for the gloomy orange of sodium street lighting) remove the red and orange from the star light. (more…)
Research by a University of Exeter astrophysicist has helped to explain how the first stars and galaxies formed
Research led by Professor Gilles Chabrier of the University of Exeter suggests that large magnetic fields were generated shortly after the Big Bang and played a key role in the formation of the first stars and galaxies
The international team of researchers, headed by Professor Chabrier and Dr Christoph Federrath of the Ecole Normale Supérieure de Lyon (France), used three-dimensional computer simulations to make their discovery. Their simulations show that even under extreme physical conditions, magnetic fields are efficiently amplified by turbulent flows. The findings are now published in the journal Physical Review Letters.(more…)
More than 500 extrasolar planets–planets that orbit stars other than the sun–have been discovered since 1995. But only in the last few years have astronomers observed that in some of these systems, the star is spinning one way and the planet is orbiting that star in the opposite direction.
“That’s really weird, and it’s even weirder because the planet is so close to the star,” said Frederic A. Rasio, a theoretical astrophysicist at Northwestern University. “How can one be spinning one way and the other orbiting exactly the other way? It’s crazy. It so obviously violates our most basic picture of planet and star formation.” (more…)