ANN ARBOR — Despite widespread concern about potential human health impacts from hydraulic fracturing, the lifetime toxic chemical releases associated with coal-generated electricity are 10 to 100 times greater than those from electricity generated with natural gas obtained via fracking, according to a new University of Michigan study.(more…)
AUSTIN, Texas – A new study finds that in Texas, the U.S. state that annually generates the most electricity, the transition from coal to natural gas for electricity generation is saving water and making the state less vulnerable to drought.
Even though exploration for natural gas through hydraulic fracturing requires significant water consumption in Texas, the new consumption is easily offset by the overall water efficiencies of shifting electricity generation from coal to natural gas. The researchers estimate that water saved by shifting a power plant from coal to natural gas is 25 to 50 times as great as the amount of water used in hydraulic fracturing to extract the natural gas. Natural gas also enhances drought resilience by providing so-called peaking plants to complement increasing wind generation, which doesn’t consume water. (more…)
Advanced solution combines big data analytics and weather modeling technology to predict output of individual wind turbines
ARMONK, N.Y., – 12 Aug 2013: IBM today announced an advanced power and weather modeling technology that will help utilities increase the reliability of renewable energy resources. The solution combines weather prediction and analytics to accurately forecast the availability of wind power and solar energy. This will enable utilities to integrate more renewable energy into the power grid, helping to reduce carbon emissions while significantly improving clean energy output for consumers and businesses. (more…)
ANN ARBOR, Mich.— For the first time, the chemical “fingerprints” of the element mercury have been used by University of Michigan researchers to directly link environmental pollution to a specific coal-burning power plant.
The primary source of mercury pollution in the atmosphere is coal combustion. The U-M mercury-fingerprinting technique – which has been under development for a decade – provides a tool that will enable researchers to identify specific sources of mercury pollution and determine how much of it is being deposited locally. (more…)
*A $2-million award from DOE will help bring down the cost of next-generation fuel cells.*
Fuel cells seem like an ideal energy source—they’re clean, efficient, silent and don’t require transmission lines. The hitch? They can be costly. Now scientists at Lawrence Berkeley National Laboratory (Berkeley Lab) hope to change that equation by building a sophisticated cost model that will take into account the total cost of ownership.
With a $2-million grant from the U.S. Department of Energy, a team of scientists led by Eric Masanet will perform a detailed assessment of fuel cell design and manufacturing that takes into account both intrinsic and external benefits. The aim is to quantify not only traditional manufacturing costs but also benefits that may previously have been overlooked and may ultimately bring down the cost of fuel cells. (more…)