In a finding that will be useful in nanoscale engineering, Brown University researchers have shown that miniscule differences in the roughness of surfaces can have important effects on how they stick together. (more…)
Berkeley Lab scientists develop a new nanotech tool to probe solar-energy conversion
If nanoscience were television, we’d be in the 1950s. Although scientists can make and manipulate nanoscale objects with increasingly awesome control, they are limited to black-and-white imagery for examining those objects. Information about nanoscale chemistry and interactions with light—the atomic-microscopy equivalent to color—is tantalizingly out of reach to all but the most persistent researchers.
But that may all change with the introduction of a new microscopy tool from researchers at the Department of Energy (DOE)’s Lawrence Berkeley National Laboratory (Berkeley Lab) that delivers exquisite chemical details with a resolution once thought impossible. The team developed their tool to investigate solar-to-electric energy conversion at its most fundamental level, but their invention promises to reveal new worlds of data to researchers in all walks of nanoscience. (more…)
Tissue engineers can use mesenchymal stem cells derived from fat to make cartilage, bone, or more fat. The best cells to use are ones that are already likely to become the desired tissue. Brown University researchers have discovered that the mechanical properties of the stem cells can foretell what they will become, leading to a potential method of concentrating them for use in healing.
PROVIDENCE, R.I. [Brown University] — To become better healers, tissue engineers need a timely and reliable way to obtain enough raw materials: cells that either already are or can become the tissue they need to build. In a new study, Brown University biomedical engineers show that the stiffness, viscosity, and other mechanical properties of adult stem cells derived from fat, such as liposuction waste, can predict whether they will turn into bone, cartilage, or fat.
That insight could lead to a filter capable of extracting the needed cells from a larger and more diverse tissue sample, said Eric Darling, senior author of the paper published in Proceedings of the National Academy of Sciences. Imagine a surgeon using such a filter to first extract fat from a patient with a bone injury and then to inject a high concentration of bone-making stem cells into the wound site during the same operation. (more…)
— For the first time, atomic force microscopy helps scientists reveal the exact chemical structure of a natural compound
— Using this fast and accurate technique could open new possibilities in drug discovery and treatments
— Compound was extracted from a mud sample taken from the Mariana Trench, 10,916 meters (35,814 feet) below sea level
ABERDEEN, Scotland & ZURICH – 02 Aug 2010:In a pioneering research project, for the first time, scientists at IBM (NYSE: IBM) and the University of Aberdeen have collaborated to “see” the structure of a marine compound from the deepest place on the Earth using an atomic force microscope (AFM). The results of the project open up new possibilities in biological research which could lead to the faster development of new medicines in the future.(more…)