Tag Archives: alzheimer’s disease

Scientists Dramatically Reduce Plaque-Forming Substances in Mice with Alzheimer’s Disease

COLUMBUS, Ohio – Scientists have found that eliminating an enzyme from mice with symptoms of Alzheimer’s disease leads to a 90 percent reduction in the compounds responsible for formation of the plaques linked to Alzheimer’s disease.

That is the most dramatic reduction in this compound reported to date in published research.

The compounds are amyloid beta, or A-beta peptides; peptides are proteins, but are shorter in length. When A-beta peptides accumulate in excessive amounts in the brain, they can form plaques, which are a hallmark of Alzheimer’s disease. (more…)

Read More

Meditation Reduces Loneliness

UCLA study also finds that mindfulness technique benefits immune system

Many elderly people spend their last years alone. Spouses pass and children scatter. But being lonely is much more than a silent house and a lack of companionship. Over time, loneliness not only takes a toll on the psyche but can have a serious physical impact as well.

Feeling lonely has been linked to an increased risk of heart disease, Alzheimer’s disease, depression and even premature death. Developing effective treatments to reduce loneliness in older adults is essential, but previous treatment efforts have had limited success. (more…)

Read More

The Search for the Earliest Signs of Alzheimer’s

Berkeley Lab scientists help paint a more complicated picture of the devastating disease

For the past five years, volunteers from the City of Berkeley and surrounding areas have come to Lawrence Berkeley National Laboratory to participate in an ongoing study that’s changing what scientists know about Alzheimer’s disease.

The volunteers, most over the age of 70, undergo what can best be described as a brain checkup. They’re asked to solve puzzles and memorize lists of words. Magnetic resonance imaging (MRI) scans image the structure of their brains in exquisite detail. Functional MRI scans allow scientists to watch portions of their brains light up as they form memories. And Positron emission tomography (PET) scans measure any accumulation of beta-amyloid, a destructive protein that’s a hallmark of Alzheimer’s. (more…)

Read More

UCLA Researchers Map Damaged Connections in Phineas Gage’s Brain

Famous 1848 case of man who survived a terrible accident has modern parallel

Poor Phineas Gage. In 1848, the supervisor for the Rutland and Burlington Railroad in Vermont was using a 13-pound, 3-foot-7-inch rod to pack blasting powder into a rock when he triggered an explosion that drove the rod through his left cheek and out of the top of his head. As reported at the time, the rod was later found, “smeared with blood and brains.”

Miraculously, Gage lived, becoming the most famous case in the history of neuroscience — not only because he survived a horrific accident that led to the destruction of much of his left frontal lobe but also because of the injury’s reported effects on his personality and behavior, which were said to be profound. Gage went from being an affable 25-year-old to one that was fitful, irreverent and profane. His friends and acquaintances said he was “no longer Gage.” (more…)

Read More

Neuro Researchers Sharpen Our Understanding of Memories

Scientists now have a better understanding of how precise memories are formed thanks to research led by Prof. Jean-Claude Lacaille of the University of Montreal’s Department of Physiology. “In terms of human applications, these findings could help us to better understand memory impairments in neurodegenerative disorders like Alzheimer’s disease,” Lacaille said. The study looks at the cells in our brains, or neurons, and how they work together as a group to form memories.

Chemical receptors at neuron interconnections called synapses enable these cells to form electrical networks that encode memories, and neurons are classified into two groups according to the type of chemical they produce: excitatory, who produce chemicals that increase communication between neurons, and inhibitory, who have the opposite effect, decreasing communication. “Scientists knew that inhibitory cells enable us to refine our memories, to make them specific to a precise set of information,” Lacaille explained. “Our findings explain for the first time how this happens at the molecular and cell levels.” (more…)

Read More

Molecular Spectroscopy Tracks Living Mammalian Cells in Real Time as They Differentiate

Berkeley Lab scientists demonstrate the promise of synchrotron infrared spectroscopy of living cells for medical applications

Knowing how a living cell works means knowing how the chemistry inside the cell changes as the functions of the cell change. Protein phosphorylation, for example, controls everything from cell proliferation to differentiation to metabolism to signaling, and even programmed cell death (apoptosis), in cells from bacteria to humans. It’s a chemical process that has long been intensively studied, not least in hopes of treating or eliminating a wide range of diseases. But until now the close-up view – watching phosphorylation work at the molecular level as individual cells change over time – has been impossible without damaging the cells or interfering with the very processes that are being examined.

“To look into phosphorylation, researchers have labeled specific phosphorylated proteins with antibodies that carry fluorescent dyes,” says Hoi-Ying Holman of the U.S. Department of Energy’s Lawrence Berkeley National Laboratory (Berkeley Lab). “That gives you a great image, but you have to know exactly what to label before you can even begin.” (more…)

Read More

International Team Uncovers New Genes That Shape Brain Size, Intelligence

*UCLA-launched partnership identifies genes that boost or lessen risk of brain atrophy, mental illness, Alzheimer’s disease*

In the world’s largest brain study to date, a team of more than 200 scientists from 100 institutions worldwide collaborated to map the human genes that boost or sabotage the brain’s resistance to a variety of mental illnesses and Alzheimer’s disease.

Published April 15 in the advance online edition of the journal Nature Genetics, the study also uncovers new genes that may explain individual differences in brain size and intelligence. (more…)

Read More

Huntington’s Disease

UD researchers develop novel technique for early detection of misfolded protein

University of Delaware assistant professor David W. Colby is co-author of a paper in the March 23 issue of the Journal of Biological Chemistry that suggests protein misfolding may occur early in the pathogenesis, or development, of Huntington’s disease.

Huntington’s disease (HD) is one of several neurological diseases, such as Alzheimer’s disease or prion disease, associated with proteins that fold into abnormal structures. HD is characterized by progressive motor impairment, cognitive decline and behavioral abnormalities, and ultimately death. (more…)

Read More