Tag Archives: wireless communications

Made in IBM Labs: IBM Scientists Unveil Highly Integrated Millimeter-Wave Transceiver for Mobile Communications and Radar Imaging applications

Researchers invent solution that seamlessly brings together 4 integrated chips and 64 antennas in a single package for mobile and transportation solutions
Proven SiGe BiCMOS prototype takes advantage of under-utilized short-wavelength frequency

SEATTLE, WA – 04 Jun 2013: Scientists from IBM have achieved a milestone in creating a phased-array transceiver that contains all of the millimeter-wave components necessary for both high data-rate communications and advanced-resolution radar imaging applications.  The newly demonstrated integrated circuits (ICs) tackle data bottleneck issues for mobile communications applications and allow radar-imaging technology to be scaled down to the size of a computer laptop.

Advanced radio frequency integration has been a key driver in the explosive growth of mobile device capability and sophistication.  Millimeter-wave bandwidth has the ability to support Gb/s wireless communications, dramatically expanding opportunities for mobile backhaul, small cell infrastructure, and data center overlay network deployment. (more…)

Read More

Made in IBM Labs: Researchers Unveil Nanotechnology Circuits for Wireless Devices

*Scientists Build the First Wafer-Scale Graphene Integrated Circuit Smaller than a Pinhead*

Yorktown Heights, NY – 10 Jun 2011: Today, IBM Research scientists announced that they have achieved a milestone in creating a building block for the future of wireless devices. In a paper published yesterday in the magazine Science, IBM researchers announced the first integrated circuit fabricated from wafer-size graphene, and demonstrated a broadband frequency mixer operating at frequencies up to 10 gigahertz (10 billion cycles/second).

Designed for wireless communications, this graphene-based analog integrated circuit could improve today’s wireless devices and points to the potential for a new set of appli-cations. At today’s conventional frequencies, cell phone and transceiver signals could be improved, potentially allowing phones to work where they can’t today while, at much higher frequencies, military and medical personnel could see concealed weapons or conduct medical imaging without the same radiation dangers of X-rays. (more…)

Read More