Tag Archives: retina

Bei Licht betrachtet: Stäbchen in der Netzhaut funktionieren auch bei Tageslicht

Befunde eines internationalen Forscherteams könnten neue Behandlungen für Tagblindheit ermöglichen

Ein internationales Forscherteam unter Leitung von Dr. Thomas Münch vom Forschungsinstitut für Augenheilkunde und dem Werner Reichardt Centrum für Integrative Neurowissenschaften der Universität Tübingen hat gezeigt, dass Stäbchen-Lichtrezeptoren in der Retina von Mäusen mehr zum Sehen beitragen als zuvor angenommen. (more…)

Read More

Major cause of blindness linked to calcium deposits in the eye

Microscopic spheres of calcium phosphate have been linked to the development of age-related macular degeneration (AMD), a major cause of blindness, by UCL-led research.

AMD affects 1 in 5 people over 75, causing their vision to slowly deteriorate, but the cause of the most common form of the disease remains a mystery.* The ability to spot the disease early and reliably halt its progression would improve the lives of millions, but this is simply not possible with current knowledge and techniques. (more…)

Read More

What Color is Your Night Light? It May Affect Your Mood

Study Finds Red Light Least Harmful, While Blue Light is Worst

COLUMBUS, Ohio –– When it comes to some of the health hazards of light at night, a new study suggests that the color of the light can make a big difference.

In a study involving hamsters, researchers found that blue light had the worst effects on mood-related measures, followed closely by white light.

But hamsters exposed to red light at night had significantly less evidence of depressive-like symptoms and changes in the brain linked to depression, compared to those that experienced blue or white light. (more…)

Read More

Molecular Spectroscopy Tracks Living Mammalian Cells in Real Time as They Differentiate

Berkeley Lab scientists demonstrate the promise of synchrotron infrared spectroscopy of living cells for medical applications

Knowing how a living cell works means knowing how the chemistry inside the cell changes as the functions of the cell change. Protein phosphorylation, for example, controls everything from cell proliferation to differentiation to metabolism to signaling, and even programmed cell death (apoptosis), in cells from bacteria to humans. It’s a chemical process that has long been intensively studied, not least in hopes of treating or eliminating a wide range of diseases. But until now the close-up view – watching phosphorylation work at the molecular level as individual cells change over time – has been impossible without damaging the cells or interfering with the very processes that are being examined.

“To look into phosphorylation, researchers have labeled specific phosphorylated proteins with antibodies that carry fluorescent dyes,” says Hoi-Ying Holman of the U.S. Department of Energy’s Lawrence Berkeley National Laboratory (Berkeley Lab). “That gives you a great image, but you have to know exactly what to label before you can even begin.” (more…)

Read More