A track about one-third of a mile (500 meters) long on Mars shows where an irregularly shaped boulder careened downhill to its current upright position, seen in a July 3, 2014, image from the High Resolution Imaging Science Experiment (HiRISE) camera aboard NASA’s Mars Reconnaissance Orbiter. (more…)
A comparison of images taken by the High Resolution Imaging Science Experiment (HiRISE) camera on NASA’s Mars Reconnaissance Orbiter in November 2010 and May 2013 reveal the formation of a new gully channel on a crater-wall slope in the southern highlands of Mars.
PASADENA, Calif. – NASA’s Mars rover Curiosity has used autonomous navigation for the first time, a capability that lets the rover decide for itself how to drive safely on Mars.
This latest addition to Curiosity’s array of capabilities will help the rover cover the remaining ground en route to Mount Sharp, where geological layers hold information about environmental changes on ancient Mars. The capability uses software that engineers adapted to this larger and more complex vehicle from a similar capability used by NASA’s Mars Exploration Rover Opportunity, which is also currently active on Mars. (more…)
PASADENA, Calif. — NASA research indicates hunks of frozen carbon dioxide — dry ice — may glide down some Martian sand dunes on cushions of gas similar to miniature hovercraft, plowing furrows as they go.
Researchers deduced this process could explain one enigmatic class of gullies seen on Martian sand dunes by examining images from NASA’s Mars Reconnaissance Orbiter (MRO) and performing experiments on sand dunes in Utah and California. (more…)
PASADENA, Calif. — Researchers using NASA’s Mars Reconnaissance Orbiter see seasonal changes on far-northern Martian sand dunes caused by warming of a winter blanket of frozen carbon dioxide.
Earth has no naturally frozen carbon dioxide, though pieces of manufactured carbon-dioxide ice, called “dry ice,” sublime directly from solid to gas on Earth, just as the vast blankets of dry ice do on Mars. A driving factor in the springtime changes where seasonal coverings of dry ice form on Mars is that thawing occurs at the underside of the ice sheet, where it is in contact with dark ground being warmed by early-spring sunshine through translucent ice. The trapped gas builds up pressure and breaks out in various ways.(more…)
As Mars rover Curiosity makes its final approach to the Red Planet, two UA geoscientists are getting ready to help solve some of the mysteries of its geologic past.
On Aug. 5, at about 10:30 p.m., an already busy summer will kick into overdrive for University of Arizona geosciences professor Bob Downs and one of his graduate students, Shaunna Morrison. At that time – provided everything goes as planned – Curiosity, the most sophisticated exploration vehicle ever sent to another planet, will parachute toward the Martian surface faster than the speed of sound after a nine-month journey through space. And as soon as it sinks its six wheels into the red dust, the two scientists specializing in mineralogy will have not one, but two planets to deal with.
As “primary data downlink leaders” designated by NASA, Downs and Morrison are part of a team of scientists tasked with the identification of rocks that Curiosity will encounter during its two-year expedition across the floor of Gale Crater near the Martian equator. (more…)
Sand dunes on Mars move not unlike those on Earth, despite a much thinner atmosphere and weaker winds, as revealed by images taken with the UA-led HiRISE camera.
NASA’s Mars Reconnaissance Orbiter, or MRO, has revealed that movement in sand dune fields on the Red Planet occurs on a surprisingly large scale, about the same as in dune fields on Earth.
This is unexpected because Mars has a much thinner atmosphere than Earth is only about 1 percent as dense, and its high-speed winds are less frequent and weaker than Earth’s.
For years, researchers debated whether or not sand dunes observed on Mars were mostly fossil features related to past climate, rather than currently active. In the past two years, researchers using images from MRO’s High Resolution Imaging Science Experiment, or HiRISE, camera have detected and reported sand movement. (more…)
A Martian dust devil roughly 12 miles high (20 kilometers) was captured whirling its way along the Amazonis Planitia region of Northern Mars on March 14. It was imaged by the High Resolution Imaging Science Experiment (HiRISE) camera on NASA’s Mars Reconnaissance Orbiter. Despite its height, the plume is little more than three-quarters of a football field wide (70 yards, or 70 meters).
Dust devils occur on Earth as well as on Mars. They are spinning columns of air, made visible by the dust they pull off the ground. Unlike a tornado, a dust devil typically forms on a clear day when the ground is heated by the sun, warming the air just above the ground. As heated air near the surface rises quickly through a small pocket of cooler air above it, the air may begin to rotate, if conditions are just right.(more…)