For decades, among the most enduring questions for ecologists have been: “Why do species live where they do? And what are the factors that keep them there?” A Princeton University-based study featured on the February cover of the journal Ecology could prove significant in answering that question, particularly for animals in the world’s temperate mountain areas.(more…)
A new study into how the world’s highest flying bird, the bar-headed goose, is able to survive at extreme altitudes may have future implications for low oxygen medical conditions in humans. (more…)
Ethnic segregation in nations straddling the world’s highest terrains may be reinforced by the biological tolerance different peoples have to altitude, according to one of the first studies to examine the effect of elevation on ethnic demographics.
Research from Princeton University published in the journal Applied Geography suggests that people native to low-lying areas can be naturally barred from regions such as the Tibetan Plateau, the Andes or the Himalayas by altitude sickness, which is caused by low oxygen concentration in the air and can be life-threatening. As a result, the homogeny of the local population can increase with elevation. In nations shared by people of high- and lowland extractions, this separation can potentially increase ethnic tension. (more…)
On the night of Aug. 5, 2010, as residents slept, water began rushing through Leh, an Indian town in a high desert valley in the Himalayas.
Average total rainfall in the area for August is about a half-inch. During this 24-hour period more than 8 inches fell, causing severe damage and leaving 193 dead, hundreds missing and thousands homeless.
“Flash flooding events don’t happen often but when they do they are some of the scariest, most dangerous and quickest natural disasters that can happen,” said Kristen Rasmussen, a University of Washington graduate student in atmospheric sciences. “But now that we know what types of conditions to look out for, flash flood warnings in remote regions of India might be possible.” (more…)
For years, many scientists had thought that plate tectonics existed nowhere in our solar system but on Earth. Now, a UCLA scientist has discovered that the geological phenomenon, which involves the movement of huge crustal plates beneath a planet’s surface, also exists on Mars.
“Mars is at a primitive stage of plate tectonics. It gives us a glimpse of how the early Earth may have looked and may help us understand how plate tectonics began on Earth,” said An Yin, a UCLA professor of Earth and space sciences and the sole author of the new research. (more…)