Tag Archives: theoretical model

New Theory May Lead to More Efficient Solar Cells

A new theoretical model developed by professors at the University of Houston (UH) and Université de Montréal may hold the key to methods for developing better materials for solar cells. Eric Bittner, a John and Rebecca Moores Professor of Chemistry and Physics in UH’s College of Natural Sciences and Mathematics, and Carlos Silva, an associate professor at the Université de Montréal and Canada Research Chair in Organic Semiconductor Materials, say the model could lead to new solar cell materials made from improved blends of semiconducting polymers and fullerenes.

The researchers describe their findings in a paper titled “Noise-Induced Quantum Coherence Drives Photo-Carrier Generation Dynamics at Polymeric Semiconductor Heterojunctions,” appearing January 29  in Nature Communications, a multidisciplinary journal dedicated to publishing research in the biological, physical and chemical sciences. (more…)

Read More

New Model Should Expedite Development of Temperature-Stable Nano-Alloys

Researchers from North Carolina State University have developed a new theoretical model that will speed the development of new nanomaterial alloys that retain their advantageous properties at elevated temperatures.

Nanoscale materials are made up of tiny crystals, or grains, that are less than 100 nanometers in diameter. These materials are of interest to researchers, designers and manufacturers because two materials can have the same chemical composition but very different mechanical properties depending on their grain size. For example, materials with nanoscale grains can be harder and stronger than chemically identical materials with larger grains. (more…)

Read More

Life Possible on Extrasolar Moons

In their search for habitable worlds, astronomers have started to consider exomoons, or those likely orbiting planets outside the solar system. In a new study, a pair of researchers has found that exomoons are just as likely to support life as exoplanets.

The research, conducted by Rory Barnes of the University of Washington and the NASA Astrobiology Institute and René Heller of Germany’s Leibniz Institute for Astrophysics Potsdam, will appear in the January issue of Astrobiology. Heller is lead author of the paper. (more…)

Read More

Why are There so Many Species of Beetles and So few Crocodiles?

Answer may be ‘adaptive zones’ that limit species number, life scientists report

There are more than 400,000 species of beetles and only two species of the tuatara, a reptile cousin of snakes and lizards that lives in New Zealand. Crocodiles and alligators, while nearly 250 million years old, have diversified into only 23 species. Why evolution has produced “winners” — including mammals and many species of birds and fish — and “losers” is a major question in evolutionary biology.

Scientists have often posited that because some animal and plant lineages are much older than others, they have had more time to produce new species (the dearth of crocodiles notwithstanding). This idea — that time is an important predictor of species number — underlies many theoretical models used by biologists. However, it fails to explain species numbers across all multi-cellular life on the planet, a team of life scientists reports Aug. 28 in the online journal PLoS Biology, a publication of the Public Library of Science. (more…)

Read More