Tag Archives: quantum mechanical phenomenon

IBM Scientists Demonstrate Quantum Phenomenon for the First Time Using a Plastic Film

Originally predicted in the 1920s by Satyendranath Bose and Albert Einstein, applications could include energy-efficient lasers and optical switches, critical components for future computer systems processing Big Data

ZURICH – 10 Dec 2013: For the first time, scientists at IBM Research have demonstrated a complex quantum mechanical phenomenon known as Bose-Einstein condensation (BEC), using a luminescent polymer (plastic) similar to the materials in light emitting displays used in many of today’s smartphones.

This discovery has potential applications in developing novel optoelectronic devices including energy-efficient lasers and ultra-fast optical switches — critical components for powering future computer systems to process massive Big Data workloads. The use of a polymer material and the observation of BEC at room temperature provides substantial advantages in terms of applicability and cost.  (more…)

Read More

Long Predicted Atomic Collapse State Observed in Graphene

Berkeley Lab researchers recreate elusive phenomenon with artificial nuclei

The first experimental observation of a quantum mechanical phenomenon that was predicted nearly 70 years ago holds important implications for the future of graphene-based electronic devices. Working with microscopic artificial atomic nuclei fabricated on graphene, a collaboration of researchers led by scientists with the U.S. Department of Energy’s Lawrence Berkeley National Laboratory (Berkeley Lab) and the University of California (UC) Berkeley have imaged the “atomic collapse” states theorized to occur around super-large atomic nuclei.

“Atomic collapse is one of the holy grails of graphene research, as well as a holy grail of atomic and nuclear physics,” says Michael Crommie, a physicist who holds joint appointments with Berkeley Lab’s Materials Sciences Division and UC Berkeley’s Physics Department. “While this work represents a very nice confirmation of basic relativistic quantum mechanics predictions made many decades ago, it is also highly relevant for future nanoscale devices where electrical charge is concentrated into very small areas.” (more…)

Read More

Physicists’ ‘Light from Darkness’ Breakthrough named A Top 2011 Discovery

ANN ARBOR, Mich.—They shook light from darkness. They coaxed something out of what we normally think of as nothing—the vacuum of space. And now their work has been named one of the top 10 breakthroughs of the year by Physics World, the international magazine announced today.

University of Michigan physics researcher Franco Nori is involved in the work, which was published in Nature in November.

The physicists directly observed, for the first time, light particles that flicker in and out of existence in the vacuum. They witnessed the long-predicted quantum mechanical phenomenon known as the dynamical Casimir effect. (more…)

Read More