Tag Archives: mars reconnaissance orbiter

NASA Orbiter Finds New Gully Channel on Mars

A comparison of images taken by the High Resolution Imaging Science Experiment (HiRISE) camera on NASA’s Mars Reconnaissance Orbiter in November 2010 and May 2013 reveal the formation of a new gully channel on a crater-wall slope in the southern highlands of Mars.

These before-and-after images are available online at https://www.jpl.nasa.gov/spaceimages/details.php?id=PIA17958 . (more…)

Read More

Managing the Deluge of ‘Big Data’ From Space

For NASA and its dozens of missions, data pour in every day like rushing rivers. Spacecraft monitor everything from our home planet to faraway galaxies, beaming back images and information to Earth. All those digital records need to be stored, indexed and processed so that spacecraft engineers, scientists and people across the globe can use the data to understand Earth and the universe beyond.

At NASA’s Jet Propulsion Laboratory in Pasadena, Calif., mission planners and software engineers are coming up with new strategies for managing the ever-increasing flow of such large and complex data streams, referred to in the information technology community as “big data.” (more…)

Read More

Marks on Martian Dunes May Be Tracks of Dry-Ice Sleds

PASADENA, Calif. — NASA research indicates hunks of frozen carbon dioxide — dry ice — may glide down some Martian sand dunes on cushions of gas similar to miniature hovercraft, plowing furrows as they go.

Researchers deduced this process could explain one enigmatic class of gullies seen on Martian sand dunes by examining images from NASA’s Mars Reconnaissance Orbiter (MRO) and performing experiments on sand dunes in Utah and California. (more…)

Read More

Ridges on Mars Suggest Ancient Flowing Water

Ridges in impact craters on Mars appear to be fossils of cracks in the Martian surface, formed by minerals deposited by flowing water. Water flowing beneath the surface suggests life may once have been possible on Mars.

PROVIDENCE, R.I. [Brown University] — Networks of narrow ridges found in impact craters on Mars appear to be the fossilized remnants of underground cracks through which water once flowed, according to a new analysis by researchers from Brown University.

The study, in press in the journal Geophysical Research Letters, bolsters the idea that the subsurface environment on Mars once had an active hydrology and could be a good place to search for evidence of past life. The research was conducted by Lee Saper, a recent Brown graduate, with Jack Mustard, professor of geological sciences. (more…)

Read More

Thawing ‘Dry Ice’ Drives Groovy Action on Mars

PASADENA, Calif. — Researchers using NASA’s Mars Reconnaissance Orbiter see seasonal changes on far-northern Martian sand dunes caused by warming of a winter blanket of frozen carbon dioxide.

Earth has no naturally frozen carbon dioxide, though pieces of manufactured carbon-dioxide ice, called “dry ice,” sublime directly from solid to gas on Earth, just as the vast blankets of dry ice do on Mars. A driving factor in the springtime changes where seasonal coverings of dry ice form on Mars is that thawing occurs at the underside of the ice sheet, where it is in contact with dark ground being warmed by early-spring sunshine through translucent ice. The trapped gas builds up pressure and breaks out in various ways. (more…)

Read More

Martian Crater May Once Have Held Groundwater-Fed Lake

PASADENA, Calif. — A NASA spacecraft is providing new evidence of a wet underground environment on Mars that adds to an increasingly complex picture of the Red Planet’s early evolution.

The new information comes from researchers analyzing spectrometer data from NASA’s Mars Reconnaissance Orbiter, which looked down on the floor of McLaughlin Crater. The Martian crater is 57 miles (92 kilometers) in diameter and 1.4 miles (2.2 kilometers) deep. McLaughlin’s depth apparently once allowed underground water, which otherwise would have stayed hidden, to flow into the crater’s interior. (more…)

Read More

12-Mile-High Martian Dust Devil Caught in Act

A Martian dust devil roughly 12 miles high (20 kilometers) was captured whirling its way along the Amazonis Planitia region of Northern Mars on March 14. It was imaged by the High Resolution Imaging Science Experiment (HiRISE) camera on NASA’s Mars Reconnaissance Orbiter. Despite its height, the plume is little more than three-quarters of a football field wide (70 yards, or 70 meters).

Dust devils occur on Earth as well as on Mars. They are spinning columns of air, made visible by the dust they pull off the ground. Unlike a tornado, a dust devil typically forms on a clear day when the ground is heated by the sun, warming the air just above the ground. As heated air near the surface rises quickly through a small pocket of cooler air above it, the air may begin to rotate, if conditions are just right. (more…)

Read More

NASA Mars Orbiter Catches Twister in Action

An afternoon whirlwind on Mars lofts a twisting column of dust more than half a mile (800 meters) high in an image from the High Resolution Imaging Science Experiment (HiRISE) camera on NASA’s Mars Reconnaissance Orbiter.

HiRISE captured the image on Feb. 16, 2012, while the orbiter passed over the Amazonis Planitia region of northern Mars. In the area observed, paths of many previous whirlwinds, or dust devils, are visible as streaks on the dusty surface. (more…)

Read More