Tag Archives: absolute zero

Good Vibrations

Berkeley Lab and UC Berkeley Researchers Record First Direct Observations of Quantum Effects in an Optomechanical System

A long-time staple of science fiction is the tractor beam, a technology in which light is used to move massive objects – recall the tractor beam in the movie Star Wars that captured the Millennium Falcon and pulled it into the Death Star. While tractor beams of this sort remain science fiction, beams of light today are being used to mechanically manipulate atoms or tiny glass beads, with rapid progress being made to control increasingly larger objects. Those who see major roles for optomechanical systems in a host of future technologies will take heart in the latest results from a first-of-its-kind experiment.

Scientists with the U.S. Department of Energy’s Lawrence Berkeley National Laboratory (Berkeley Lab) and the University of California (UC) Berkeley, using a unique optical trapping system that provides ensembles of ultracold atoms, have recorded the first direct observations of distinctly quantum optical effects – amplification and squeezing – in an optomechanical system. Their findings point the way toward low-power quantum optical devices and enhanced detection of gravitational waves among other possibilities. (more…)

Read More

A New Tool to Attack the Mysteries of High-Temperature Superconductivity

Berkeley Lab researchers use an ultrafast laser to better understand high-temperature superconductors

Superconductivity, in which electric current flows without resistance, promises huge energy savings – from low-voltage electric grids with no transmission losses, superefficient motors and generators, and myriad other schemes. But such everyday applications still lie in the future, because conventional superconductivity in metals can’t do the job.

Although they play important roles in science, industry, and medicine, conventional superconductors must be maintained at temperatures a few degrees above absolute zero, which is tricky and expensive. Wider uses will depend on higher-temperature superconductors that can function well above absolute zero. Yet known high-temperature (high-Tc) superconductors are complex materials whose electronic structures, despite decades of work, are still far from clear. (more…)

Read More

Ultracold Experiments Heat Up Quantum Research

University of Chicago physicists have experimentally demonstrated, for the first time, that atoms chilled to temperatures near absolute zero may behave like seemingly unrelated natural systems of vastly different scales, offering potential insights into links between the atomic realm and deep questions of cosmology.

This ultracold state, called “quantum criticality,” hints at similarities between such diverse phenomena as the gravitational dynamics of black holes or the exotic conditions that prevailed at the birth of the universe, said Cheng Chin, associate professor in physics at UChicago. The results could even point to ways of simulating cosmological phenomena of the early universe by studying systems of atoms in states of quantum criticality. (more…)

Read More