Tag Archives: sharon swartz

Bats: Virtually a model of flight

“Virtual Reality Design for Science” is a co-listed class at Brown and RISD that unites artists, designers, computer scientists, and experts in scientific visualization. The goal: to create tools for immersive interaction with scientific data. Test case for the course: the flight mechanics of bats.

PROVIDENCE, R.I. [Brown University] — If you want to get a good look at a bat, a cave is a pretty good place to go. But on a Thursday in mid-December at Brown’s Granoff Center, there were virtual bats flapping about in a cave of a different sort. (more…)

Read More

Brown Researchers Build Robotic Bat Wing

The strong, flapping flight of bats offers great possibilities for the design of small aircraft, among other applications. By building a robotic bat wing, Brown researchers have uncovered flight secrets of real bats: the function of ligaments, the elasticity of skin, the structural support of musculature, skeletal flexibility, upstroke, downstroke.

PROVIDENCE, R.I. [Brown University] — Researchers at Brown University have developed a robotic bat wing that is providing valuable new information about dynamics of flapping flight in real bats. (more…)

Read More

Bats Save Energy By Drawing in Wings on Upstroke

Bat wings are like hands: meaty, bony and full of joints. A new Brown University study finds that bats take advantage of their flexibility by folding in their wings on the upstroke to save inertial energy. The research suggests that engineers looking at flapping flight should account for wing mass and consider a folding design.

PROVIDENCE, R.I. [Brown University] — Whether people are building a flying machine or nature is evolving one, there is pressure to optimize efficiency. A new analysis by biologists, physicists, and engineers at Brown University reveals the subtle but important degree to which that pressure has literally shaped the flapping wings of bats.

The team’s observations and calculations show that by flexing their wings inward to their bodies on the upstroke, bats use only 65 percent of the inertial energy they would expend if they kept their wings fully outstretched. Unlike insects, bats have heavy, muscular wings with hand-like bendable joints. The study suggests that they use their flexibility to compensate for that mass. (more…)

Read More