Tag Archives: protons

Sun and Planets Constructed Differently, Analysis from Nasa Mission Suggests

The sun and the solar system’s rocky inner planets, including the Earth, may have formed differently than previously thought, according to UCLA scientists and colleagues analyzing samples returned by NASA’s Genesis mission.

The data from Genesis, which collected material from the solar wind blowing from the sun, reveal differences between the sun and planets with regard to oxygen and nitrogen, two of the most abundant elements in our solar system, the researchers report in two studies in the June 24 issue of the journal Science. And although the differences are slight, the research could help determine how our solar system evolved. (more…)

Read More

When Matter Melts

*By comparing theory with data from STAR, Berkeley Lab scientists and their colleagues map phase changes in the quark-gluon plasma*

In its infancy, when the universe was a few millionths of a second old, the elemental constituents of matter moved freely in a hot, dense soup of quarks and gluons. As the universe expanded, this quark–gluon plasma quickly cooled, and protons and neutrons and other forms of normal matter “froze out”: the quarks became bound together by the exchange of gluons, the carriers of the color force.

“The theory that describes the color force is called quantum chromodynamics, or QCD,” says Nu Xu of the U.S. Department of Energy’s Lawrence Berkeley National Laboratory (Berkeley Lab), the spokesperson for the STAR experiment at the Relativistic Heavy Ion Collider (RHIC) at DOE’s Brookhaven National Laboratory. “QCD has been extremely successful at explaining interactions of quarks and gluons at short distances, such as high-energy proton and antiproton collisions at Fermi National Accelerator Laboratory. But in bulk collections of matter – including the quark-gluon plasma – at longer distances or smaller momentum transfer, an approach called lattice gauge theory has to be used.” (more…)

Read More

The Promise of Ion Beam Cancer Therapy

For certain kinds of cancer, the most effective therapy does not use x-rays or gamma rays but beams of ions, the electrically charged cores of atoms, including hydrogen ions (protons) and heavier ions such as carbon and neon.

About the image: Beams of heavy ions can target hard-to-reach tumors with great accuracy and with minimal damage to surrounding tissues. Heidelberg Ion-Beam Therapy Center. Image credit: Berkeley Lab (more…)

Read More