Forschern um Physiker Roland Wester gelang es erstmals, einen elementaren Stoßprozess zwischen Atomen und geladenen Molekülen bei tiefen Temperaturen präzise zu vermessen und zu beschreiben. Das Experiment, bei dem nur ein einziges Quant an Energie in die Drehbewegung des Moleküls übertragen wird, stimmt sehr genau mit theoretischen Berechnungen überein.(more…)
Eines der wesentlichen Phänomene der Quantenphysik ist die Existenz von sogenannten Verschränkungszuständen, wobei Teilchen in einer scheinbar paradoxen Art und Weise miteinander verbunden sind. Verschränkungszustände bilden die Grundlage für eine Reihe von neuartigen technologischen Anwendungen. In vielen Fällen kann deren Nützlichkeit durch erhöhte Komplexität gesteigert werden. Ein Forscherteam rund um den Wiener Physiker Anton Zeilinger hat nun die komplexesten Verschränkungszustände nachgeweisen, die bislang mit Photonen – elementaren Lichtteilchen – geschaffen wurden. Die Forschungsergebnisse, die aktuell in der renommierten Fachzeitschrift PNAS erscheinen, bringen die effiziente Nutzung von Quanteneffekten in technologischen Anwendungen wieder einen Schritt weiter.
Als Quantenverschränkung wird ein Effekt bezeichnet, der es zwei oder mehreren Teilchen scheinbar erlaubt, einander ohne Zeitverzögerung über beliebige räumliche Distanzen hinweg zu beeinflussen. Obwohl dieses Verhalten im Rahmen der Quantenphysik an sich weitgehend verstanden ist, widerspricht es unserer Intuition. (more…)
Auch einfache Systeme wie neutrale Atome können chaotisches Verhalten zeigen. Das hat ein Team um Physikerin Francesca Ferlaino mit Hilfe der Quantenmechanik entdeckt. Die in der Fachzeitschrift Nature veröffentlichte, bahnbrechende Forschungsarbeit eröffnet neue Wege, die Wechselwirkung von Quantenteilchen zu betrachten.
Ein Team um START- und ERC-Preisträgerin Francesca Ferlaino vom Institut für Experimentalphysik der Universität Innsbruck hat erstmals den experimentellen Nachweis für chaotisches Verhalten von Teilchen in Quantengasen erbracht. „Wir sehen zum ersten Mal Quantenchaos im Streuverhalten ultrakalter Atome“, freut sich Ferlaino. Die Physiker haben dieses Ergebnis unter Zuhilfenahme der Zufallsmatrixtheorie (engl.: Random Matrix Theory) nachgewiesen und belegen damit den universellen Charakter dieser statistischen Theorie, welche in den 1950er-Jahren von Nobelpreisträger Eugene Wigner zur Beschreibung von komplexen Systemen formuliert worden war. Obwohl die Wechselwirkung von Neutronen mit Atomkernen damals noch nicht genau bekannt war, konnte Wigner durch die Verwendung von Zufallsmatrizen zuverlässige Aussagen zu den Eigenschaften des komplexen Spektrums treffen. Diese sogenannte Zufallsmatrixtheorie findet heute in der Physik breite Anwendung, aber auch in der Zahlentheorie, der drahtlosen Nachrichtentechnik oder im Finanzmarktmanagement, um nur einige Bereiche zu nennen. In der Bohigas-Giannoni-Schmit-Vermutung wurde die Zufallsmatrixtheorie auch mit chaotischem Verhalten in quantenmechanischen Systemen in Verbindung gebracht. Der im Vorjahr verstorbene katalanische Physiker Oriol Bohigas gilt als Vater dieser Quantenchaos-Forschung. (more…)
Der Durchschnitt wird für viele Dinge ermittelt: die Körpergröße, monatliche Arbeitstage oder die Wohnungsmieten einer Stadt, und spielt auch in der Analyse wissenschaftlicher Daten eine wichtige Rolle. Am Beispiel der Analyse von Proteinkristallstrukturen demonstrieren Computerbiologen der Max F. Perutz Laboratories der Universität Wien und der Medizinischen Universität Wien nun, dass das nicht immer der beste Weg ist. Die Studie des Teams um Bojan Zagrovic, erschienen im Fachjournal Nature Communications, zeigt, dass Proteinstrukturen wahrscheinlich sehr viel dynamischer und heterogener sind, als gängige Methoden zur Röntgenstrukturanalyse nahelegen.
Wann die Ermittlung des Durchschnitts gut ist und wann nicht (more…)