NASA’s Mars Atmosphere and Volatile Evolution (MAVEN) spacecraft has provided scientists their first look at a storm of energetic solar particles at Mars, produced unprecedented ultraviolet images of the tenuous oxygen, hydrogen, and carbon coronas surrounding the Red Planet, and yielded a comprehensive map of highly variable ozone in the atmosphere underlying the coronas. (more…)
A solar tsunami observed by NASA’s Solar Dynamics Observatory (SDO) and the Japanese Hinode spacecraft has been used to provide the first accurate estimates of the Sun’s magnetic field.
Solar tsunamis are produced by enormous explosions in the Sun’s atmosphere called coronal mass ejections (CMEs). As the CME travels out into space, the tsunami travels across the Sun at speeds of up to 1000 kilometres per second.
Similar to tsunamis on Earth, the shape of solar tsunamis is changed by the environment through which they move. Just as sound travels faster in water than in air, solar tsunamis have a higher speed in regions of stronger magnetic field. This unique feature allowed the team, led by researchers from UCL’s Mullard Space Science Laboratory, to measure the Sun’s magnetic field. The results are outlined in a paper soon to be published in the journal Solar Physics. (more…)
The past few months have seen a spate of solar flares – bringing spectacular views of the northern lights as far south as Seattle – along with media speculation that the electrical activity could disrupt power grids, satellites or ground airplanes.
John Sahr, a UW professor of electrical engineering who studies the upper atmosphere, is the regional go-to guy for such questions. We found some time in Sahr’s busy schedule (he’s also the UW’s associate dean of undergraduate academic affairs and a part-time zombie hunter) to get his read on the space weather forecast. (more…)