A new technology that reveals cellular gene transcription in greater detail has been developed by Dr. Daniel Kaufmann of the University of Montreal Hospital Research Centre (CRCHUM) and the research team he directed. “This new research tool offers us a more profound view of the immune responses that are involved in a range of diseases, such as HIV infection. At the level of gene transcription, this had been difficult, complex and costly to do with current technologies, such as microscopy,” explained the University of Montreal professor.(more…)
Lariats are discarded byproducts of RNA splicing, the process by which genetic instructions for making proteins are assembled. A new study has found hundreds more lariats than ever before, yielding new information about how splicing occurs and how it can lead to disease.
PROVIDENCE, R.I. [Brown University] — Tiny, transient loops of genetic material, detected and studied by the hundreds for the first time at Brown University, are providing new insights into how the body transcribes DNA and splices (or missplices) those transcripts into the instructions needed for making proteins.
The lasso-shaped genetic snippets — they are called lariats — that the Brown team reports studying in the June 17 edition of Nature Structural & Molecular Biology are byproducts of gene transcription. Until now scientists had found fewer than 100 lariats, mostly by poring over very small selections of introns, which are sections of genetic code that do not directly code for proteins, but contain important signals that direct the way protein-coding regions are assembled. In the new study, Brown biologists report that they found more than 800 lariats in a publicly available set of billions of RNA reads derived from human tissues. (more…)