Tag Archives: hydrogen

Jupiter’s Red Spot is Likely a Sunburn, Not a Blush

The ruddy color of Jupiter’s Great Red Spot is likely a product of simple chemicals being broken apart by sunlight in the planet’s upper atmosphere, according to a new analysis of data from NASA’s Cassini mission. The results contradict the other leading theory for the origin of the spot’s striking color — that the reddish chemicals come from beneath Jupiter’s clouds. (more…)

Read More

Hubble Sees Evidence of Water Vapor at Jupiter Moon

NASA’s Hubble Space Telescope has observed water vapor above the frigid south polar region of Jupiter’s moon Europa, providing the first strong evidence of water plumes erupting off the moon’s surface.

Previous scientific findings from other sources already point to the existence of an ocean located under Europa’s icy crust. Researchers are not yet fully certain whether the detected water vapor is generated by erupting water plumes on the surface, but they are confident this is the most likely explanation. (more…)

Read More

Nanoscale Coatings Improve Stability and Efficiency of Devices for Renewable Fuel Generation

Splitting water into its components, two parts hydrogen and one part oxygen, is an important first step in achieving carbon-neutral fuels to power our transportation infrastructure – including automobiles and planes.

Now, North Carolina State University researchers and colleagues from the University of North Carolina at Chapel Hill have shown that a specialized coating technique can make certain water-splitting devices more stable and more efficient. Their results are published online in two separate papers in the Proceedings of the National Academy of Sciences. (more…)

Read More

Study: Greenhouse gas might have warmed early Mars enough to allow liquid water

The mystery of how the surface of Mars, long dead and dry, could have flowed with water billions of years ago may have been solved by research that included a University of Washington astronomer.

There is evidence that Mars had water at its surface 3.8 billion years ago or before, but scientists are divided on how that might have happened, especially since the sun was about 30 percent fainter back then, thus less able to melt water ice on Mars. (more…)

Read More

CU-Boulder team develops new water splitting technique that could produce hydrogen

A University of Colorado Boulder team has developed a radically new technique that uses the power of sunlight to efficiently split water into its components of hydrogen and oxygen, paving the way for the broad use of hydrogen as a clean, green fuel.

The CU-Boulder team has devised a solar-thermal system in which sunlight could be concentrated by a vast array of mirrors onto a single point atop a central tower up to several hundred feet tall. The tower would gather heat generated by the mirror system to roughly 2,500 degrees Fahrenheit (1,350 Celsius), then deliver it into a reactor containing chemical compounds known as metal oxides, said CU-Boulder Professor Alan Weimer, research group leader. (more…)

Read More

Testing Artificial Photosynthesis

Berkeley Lab Researchers Develop Fully Integrated Microfluidic Test-bed for Solar-driven Electrochemical Energy Conversion Systems

With the daily mean concentrations of atmospheric carbon dioxide having reached 400 parts-per-million for the first time in human history, the need for carbon-neutral alternatives to fossil fuel energy has never been more compelling. With enough energy in one hour’s worth of global sunlight to meet all human needs for a year, solar technologies are an ideal solution. However, a major challenge is to develop efficient ways to convert solar energy into electrochemical energy on a massive-scale. A key to meeting this challenge may lie in the ability to test such energy conversion schemes on the micro-scale.

Berkeley Lab researchers, working at the Joint Center for Artificial Photosynthesis (JCAP), have developed the first fully integrated microfluidic test-bed for evaluating and optimizing solar-driven electrochemical energy conversion systems. This test-bed system has already been used to study schemes for photovoltaic electrolysis of water, and can be readily adapted to study proposed artificial photosynthesis and fuel cell technologies. (more…)

Read More

A Telescope at the Bottom of the World

Alone in a wilderness of snow and ice, 600 miles from the Earth’s South Pole, a solitary telescope watches the stars, searching for the origins of the colorful nebulae in which stars are born.

The brilliantly colored, sweeping nebulae featured on magazine covers and posters lining museum exhibits are the birthplaces and cradles of the stars in our galaxy.

Out of the blackness of space and swirling gasses and debris, these nebulae take form, coalescing into columns and structures that remind us of Earthly shapes: here a horsehead, there a dragon. (more…)

Read More

NASA Rover Finds Conditions Once Suited for Ancient Life on Mars

PASADENA, Calif. –– An analysis of a rock sample collected by NASA’s Curiosity rover shows ancient Mars could have supported living microbes.

Scientists identified sulfur, nitrogen, hydrogen, oxygen, phosphorus and carbon — some of the key chemical ingredients for life — in the powder Curiosity drilled out of a sedimentary rock near an ancient stream bed in Gale Crater on the Red Planet last month.

“A fundamental question for this mission is whether Mars could have supported a habitable environment,” said Michael Meyer, lead scientist for NASA’s Mars Exploration Program at the agency’s headquarters in Washington. “From what we know now, the answer is yes.” (more…)

Read More