Tag Archives: contamination

Fungi, Fungi Everywhere

New research shows fungi living beneath the seafloor are widespread

Fungi living beneath the seafloor are widespread in ocean environments around the world, according to a new paper by scientists at the University of Delaware and Woods Hole Oceanographic Institution. 

“They’re ubiquitous,” said co-author Jennifer Biddle, assistant professor of marine biosciences at UD’s College of Earth, Ocean, and Environment. “They are everywhere.” (more…)

Read More

Fishing for Answers off Fukushima

Japan fisheries data provides a look at how the ocean is faring 18 months after the worst accidental release of radiation to the ocean in history

Japan’s triple disaster,” as it has become known, began on March 11, 2011, and remains unprecedented in its scope and complexity. To understand the lingering effects and potential public health implications of that chain of events, scientists are turning to a diverse and widespread sentinel in the world’s ocean: fish.

Events on March 11 began with a magnitude 9.0 earthquake, the fourth largest ever recorded. The earthquake in turn spawned a massive 40-foot tsunami that inundated the northeast Japanese coast and resulted in an estimated 20,000 missing or dead. Finally, the wave caused catastrophic damage to the Fukushima Dai-ichi nuclear power plant, resulting in the largest accidental release of radiation to the ocean in history, 80 percent of which ended up in the Northwest Pacific Ocean. (more…)

Read More

Another Advance on the Road to Spintronics

Berkeley Lab Researchers Unlock Ferromagnetic Secrets of Promising Materials

Spintronic technology, in which data is processed on the basis of electron “spin” rather than charge, promises to revolutionize the computing industry with smaller, faster and more energy efficient data storage and processing. Materials drawing a lot of attention for spintronic applications are dilute magnetic semiconductors – normal semiconductors to which a small amount of magnetic atoms is added to make them ferromagnetic. Understanding the source of ferromagnetism in dilute magnetic semiconductors has been a major road-block impeding their further development and use in spintronics. Now a significant step to removing this road-block has been taken.

A multi-institutional collaboration of researchers led by scientists at the U.S. Department of Energy’s Lawrence Berkeley National Laboratory (Berkeley Lab), using a new technique called HARPES, for Hard x-ray Angle-Resolved PhotoEmission Spectroscopy, has investigated the bulk electronic structure of the prototypical dilute magnetic semiconductor gallium manganese arsenide. Their findings show that the material’s ferromagnetism arises from both of the two different mechanisms that have been proposed to explain it. (more…)

Read More

Where the Germs Are: Office Kitchens, Break Rooms

A study aided by UA microbiologist Charles Gerba finds that office kitchens and break rooms are frequent hot spots for bacteria.

If you thought the restroom was the epicenter of workplace germs, you don’t want to know about office break rooms and kitchens.

The place where U.S. workers eat and prepare their lunches topped the list of office germ hot spots, with the sink and microwave door handles found to be the dirtiest surfaces touched by office workers on a daily basis. (more…)

Read More

Carbon from Martian Meteorites Not Evidence of Life

The findings provide insight into the chemical processes taking place on Mars and will help aid future quests for evidence of ancient or modern Martian life.

Carbon in some Martian meteorites came from Mars but not from life on Mars, according to new research from an international team that includes a University of Arizona geoscientist.

Molecules containing large chains of carbon and hydrogen – the building blocks of all life on Earth – have been the targets of missions to Mars from Viking to the present day.

Scientists have disagreed about how the organic carbon found in meteorites from Mars was formed and whether or not it came from Mars. (more…)

Read More

Researchers Assess Radioactivity Released to the Ocean from the Fukushima Dai-Ichi Nuclear Power Facility

With news this week of additional radioactive leaks from Fukushima nuclear power plants, the impact on the ocean of releases of radioactivity from the plants remains unclear. But a new study by U.S. and Japanese researchers analyzes the levels of radioactivity discharged from the facility in the first four months after the accident and draws some basic conclusions about the history of contaminant releases to the ocean.

The study, conducted by Woods Hole Oceanographic Institution chemist Ken Buesseler and two Japanese colleagues, Michio Aoyama of the Meteorological Research Institute and Masao Fukasawa of the Japan Agency for Marine-Earth Science and Technology, reports that discharges from the Fukushima Dai-Ichi nuclear power plants peaked one month after the March 11 earthquake and tsunami that precipitated the nuclear accident, and continue through at least July. Their study finds the levels of radioactivity, while quite elevated, are not a direct exposure threat to humans or marine life, but cautions that the impact of accumulated radionuclides in marine sediments is poorly known. (more…)

Read More

Chemistry Professor Links Faeces and Caffeine

Researchers led by Prof. Sébastien Sauvé of the University of Montreal’s Department of Chemistry have discovered that traces of caffeine are a useful indicator of the contamination of our water by sewers. “E coli bacteria is commonly used to evaluate and regulate the levels of fecal pollution of our water from storm water discharge, but because storm sewers systems collect surface runoff, non-human sources can contribute significantly to the levels that are observed,” Sauvé explained. “Our study has determined that there is a strong correlation between the levels of caffeine in water and the level of bacteria, and that chemists can therefore use caffeine levels as an indicator of pollution due to sewerage systems.” (more…)

Read More

New View of Family Life in the North American Nebula

Pasadena, Calif. — Stars at all stages of development, from dusty little tots to young adults, are on display in a new image from NASA’s Spitzer Space Telescope.

This cosmic community is called the North American nebula. In visible light, the region resembles the North American continent, with the most striking resemblance being the Gulf of Mexico. But in Spitzer’s infrared view, the continent disappears. Instead, a swirling landscape of dust and young stars comes into view.

“One of the things that makes me so excited about this image is how different it is from the visible image, and how much more we can see in the infrared than in the visible,” said Luisa Rebull of NASA’s Spitzer Science Center at the California Institute of Technology, Pasadena, Calif. Rebull is lead author of a paper about the observations, accepted for publication in the Astrophysical Journal Supplement Series. “The Spitzer image reveals a wealth of detail about the dust and the young stars here.” (more…)

Read More